Zihe Li, Ziyu Xu, Lei Zhu, Tao Qin, Jinrui Ma, Zhanying Feng, Huishan Yue, Qing Guan, Botong Zhou, Ge Han, Guokun Zhang, Chunyi Li, Shuaijun Jia, Qiang Qiu, Dingjun Hao, Yong Wang, Wen Wang
{"title":"高质量梅花鹿全息数据和综合分析揭示了鹿茸再生的基因和细胞调控机制","authors":"Zihe Li, Ziyu Xu, Lei Zhu, Tao Qin, Jinrui Ma, Zhanying Feng, Huishan Yue, Qing Guan, Botong Zhou, Ge Han, Guokun Zhang, Chunyi Li, Shuaijun Jia, Qiang Qiu, Dingjun Hao, Yong Wang, Wen Wang","doi":"10.1101/gr.279448.124","DOIUrl":null,"url":null,"abstract":"Antler is the only organ that can fully regenerate annually in mammals. However, the regulatory pattern and mechanism of gene expression and cell differentiation during this process remain largely unknown. Here, we obtain comprehensive assembly and gene annotation of the sika deer (<em>Cervus nippon</em>) genome. Together with large-scale chromatin accessibility and gene expression data, we construct gene regulatory networks involved in antler regeneration, identifying four transcription factors, <em>MYC</em>, <em>KLF4</em>, <em>NFE2L2</em>, and <em>JDP2</em> with high regulatory activity across whole regeneration process. Comparative studies and luciferase reporter assay suggest the <em>MYC</em> expression driven by a cervid-specific regulatory element might be important for antler regenerative ability. We further develop a model called cTOP which integrates single-cell data with bulk regulatory networks and find <em>PRDM1</em>, <em>FOSL1</em>, <em>BACH1</em>, and <em>NFATC1</em> as potential pivotal factors in antler stem cell activation and osteogenic differentiation. Additionally, we uncover interactions within and between cell programs and pathways during the regeneration process. These findings provide insights into the gene and cell regulatory mechanisms of antler regeneration, particularly in stem cell activation and differentiation.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"22 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-quality sika deer omics data and integrative analysis reveal genic and cellular regulation of antler regeneration\",\"authors\":\"Zihe Li, Ziyu Xu, Lei Zhu, Tao Qin, Jinrui Ma, Zhanying Feng, Huishan Yue, Qing Guan, Botong Zhou, Ge Han, Guokun Zhang, Chunyi Li, Shuaijun Jia, Qiang Qiu, Dingjun Hao, Yong Wang, Wen Wang\",\"doi\":\"10.1101/gr.279448.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antler is the only organ that can fully regenerate annually in mammals. However, the regulatory pattern and mechanism of gene expression and cell differentiation during this process remain largely unknown. Here, we obtain comprehensive assembly and gene annotation of the sika deer (<em>Cervus nippon</em>) genome. Together with large-scale chromatin accessibility and gene expression data, we construct gene regulatory networks involved in antler regeneration, identifying four transcription factors, <em>MYC</em>, <em>KLF4</em>, <em>NFE2L2</em>, and <em>JDP2</em> with high regulatory activity across whole regeneration process. Comparative studies and luciferase reporter assay suggest the <em>MYC</em> expression driven by a cervid-specific regulatory element might be important for antler regenerative ability. We further develop a model called cTOP which integrates single-cell data with bulk regulatory networks and find <em>PRDM1</em>, <em>FOSL1</em>, <em>BACH1</em>, and <em>NFATC1</em> as potential pivotal factors in antler stem cell activation and osteogenic differentiation. Additionally, we uncover interactions within and between cell programs and pathways during the regeneration process. These findings provide insights into the gene and cell regulatory mechanisms of antler regeneration, particularly in stem cell activation and differentiation.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279448.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279448.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
High-quality sika deer omics data and integrative analysis reveal genic and cellular regulation of antler regeneration
Antler is the only organ that can fully regenerate annually in mammals. However, the regulatory pattern and mechanism of gene expression and cell differentiation during this process remain largely unknown. Here, we obtain comprehensive assembly and gene annotation of the sika deer (Cervus nippon) genome. Together with large-scale chromatin accessibility and gene expression data, we construct gene regulatory networks involved in antler regeneration, identifying four transcription factors, MYC, KLF4, NFE2L2, and JDP2 with high regulatory activity across whole regeneration process. Comparative studies and luciferase reporter assay suggest the MYC expression driven by a cervid-specific regulatory element might be important for antler regenerative ability. We further develop a model called cTOP which integrates single-cell data with bulk regulatory networks and find PRDM1, FOSL1, BACH1, and NFATC1 as potential pivotal factors in antler stem cell activation and osteogenic differentiation. Additionally, we uncover interactions within and between cell programs and pathways during the regeneration process. These findings provide insights into the gene and cell regulatory mechanisms of antler regeneration, particularly in stem cell activation and differentiation.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.