利用三维电化学晶格玻尔兹曼模型深入了解非水锂离子电池的放电情况

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Timan Lei, Junyu Yang, Geng Wang, Jin Chen, Yinglong He, Kai H. Luo
{"title":"利用三维电化学晶格玻尔兹曼模型深入了解非水锂离子电池的放电情况","authors":"Timan Lei, Junyu Yang, Geng Wang, Jin Chen, Yinglong He, Kai H. Luo","doi":"10.1016/j.cej.2024.157462","DOIUrl":null,"url":null,"abstract":"Non-aqueous Li–<span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> battery (NALiO2B) is a promising alternative to lithium-ion batteries, offering high theoretical energy density. However, its practical applications are hampered by limited understanding of the underlying mechanisms. In this study, a three-dimensional electrochemical lattice Boltzmann method is proposed to simulate the physical and electrochemical processes during NALiO2B discharge at the pore scale. The discharge performance of NALiO2B is evaluated for various electrode and electrolyte designs. It is found that the limited <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> diffusion within homogeneous electrodes is the primary cause of the declined reactive electrode surface area, the intensified electrochemical reaction (or overpotential), and finally the premature battery death. This issue can be mitigated by employing the hierarchical electrode <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> with a bi-porous structure. The large pores in <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> improve <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> transport to sustain the stable reaction process, thus enhancing the discharge capacity of NALiO2B. To further boost the rate capability of NALiO2B, <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> is partially infiltrated with electrolyte to form the multiphase (MP) electrode, where air bubbles exist and serve as <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> reservoirs. These bubbles effectively provide adequate <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> to support the extensive <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> consumption during the fast electrochemical reaction at high current densities. Consequently, NALiO2B with MP demonstrates the satisfactory discharge capacity and rate capability. This study provides valuable insights into the complex physics and reaction kinetics behind NALiO2B discharge, which facilitates the optimization and development of NALiO2B.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"11 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into discharge of non-aqueous Li–O2 battery using a three-dimensional electrochemical lattice Boltzmann model\",\"authors\":\"Timan Lei, Junyu Yang, Geng Wang, Jin Chen, Yinglong He, Kai H. Luo\",\"doi\":\"10.1016/j.cej.2024.157462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-aqueous Li–<span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> battery (NALiO2B) is a promising alternative to lithium-ion batteries, offering high theoretical energy density. However, its practical applications are hampered by limited understanding of the underlying mechanisms. In this study, a three-dimensional electrochemical lattice Boltzmann method is proposed to simulate the physical and electrochemical processes during NALiO2B discharge at the pore scale. The discharge performance of NALiO2B is evaluated for various electrode and electrolyte designs. It is found that the limited <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> diffusion within homogeneous electrodes is the primary cause of the declined reactive electrode surface area, the intensified electrochemical reaction (or overpotential), and finally the premature battery death. This issue can be mitigated by employing the hierarchical electrode <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> with a bi-porous structure. The large pores in <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> improve <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> transport to sustain the stable reaction process, thus enhancing the discharge capacity of NALiO2B. To further boost the rate capability of NALiO2B, <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> is partially infiltrated with electrolyte to form the multiphase (MP) electrode, where air bubbles exist and serve as <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> reservoirs. These bubbles effectively provide adequate <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> to support the extensive <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> consumption during the fast electrochemical reaction at high current densities. Consequently, NALiO2B with MP demonstrates the satisfactory discharge capacity and rate capability. This study provides valuable insights into the complex physics and reaction kinetics behind NALiO2B discharge, which facilitates the optimization and development of NALiO2B.\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157462\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157462","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非水锂离子电池(NALiO2B)具有很高的理论能量密度,是一种很有前途的锂离子电池替代品。然而,由于对其基本机理的了解有限,其实际应用受到了阻碍。本研究提出了一种三维电化学晶格玻尔兹曼方法来模拟 NALiO2B 在孔隙尺度上放电时的物理和电化学过程。针对不同的电极和电解质设计,对 NALiO2B 的放电性能进行了评估。研究发现,均质电极内有限的 O2O2 扩散是导致活性电极表面积下降、电化学反应加剧(或过电位)以及电池过早损坏的主要原因。采用具有双孔结构的分层电极 BP2BP2 可以缓解这一问题。BP2BP2 中的大孔改善了 O2O2 的传输,维持了稳定的反应过程,从而提高了 NALiO2B 的放电能力。为了进一步提高 NALiO2B 的速率能力,在 BP2BP2 中渗入部分电解质,形成多相(MP)电极,其中存在气泡作为 O2O2 储层。这些气泡可有效提供充足的 O2O2,以支持高电流密度下快速电化学反应过程中大量消耗 O2O2。因此,含有 MP 的 NALiO2B 具有令人满意的放电能力和速率能力。这项研究为了解 NALiO2B 放电背后复杂的物理和反应动力学提供了宝贵的见解,有助于 NALiO2B 的优化和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insight into discharge of non-aqueous Li–O2 battery using a three-dimensional electrochemical lattice Boltzmann model
Non-aqueous Li–O2 battery (NALiO2B) is a promising alternative to lithium-ion batteries, offering high theoretical energy density. However, its practical applications are hampered by limited understanding of the underlying mechanisms. In this study, a three-dimensional electrochemical lattice Boltzmann method is proposed to simulate the physical and electrochemical processes during NALiO2B discharge at the pore scale. The discharge performance of NALiO2B is evaluated for various electrode and electrolyte designs. It is found that the limited O2 diffusion within homogeneous electrodes is the primary cause of the declined reactive electrode surface area, the intensified electrochemical reaction (or overpotential), and finally the premature battery death. This issue can be mitigated by employing the hierarchical electrode BP2 with a bi-porous structure. The large pores in BP2 improve O2 transport to sustain the stable reaction process, thus enhancing the discharge capacity of NALiO2B. To further boost the rate capability of NALiO2B, BP2 is partially infiltrated with electrolyte to form the multiphase (MP) electrode, where air bubbles exist and serve as O2 reservoirs. These bubbles effectively provide adequate O2 to support the extensive O2 consumption during the fast electrochemical reaction at high current densities. Consequently, NALiO2B with MP demonstrates the satisfactory discharge capacity and rate capability. This study provides valuable insights into the complex physics and reaction kinetics behind NALiO2B discharge, which facilitates the optimization and development of NALiO2B.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信