Timan Lei, Junyu Yang, Geng Wang, Jin Chen, Yinglong He, Kai H. Luo
{"title":"利用三维电化学晶格玻尔兹曼模型深入了解非水锂离子电池的放电情况","authors":"Timan Lei, Junyu Yang, Geng Wang, Jin Chen, Yinglong He, Kai H. Luo","doi":"10.1016/j.cej.2024.157462","DOIUrl":null,"url":null,"abstract":"Non-aqueous Li–<span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> battery (NALiO2B) is a promising alternative to lithium-ion batteries, offering high theoretical energy density. However, its practical applications are hampered by limited understanding of the underlying mechanisms. In this study, a three-dimensional electrochemical lattice Boltzmann method is proposed to simulate the physical and electrochemical processes during NALiO2B discharge at the pore scale. The discharge performance of NALiO2B is evaluated for various electrode and electrolyte designs. It is found that the limited <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> diffusion within homogeneous electrodes is the primary cause of the declined reactive electrode surface area, the intensified electrochemical reaction (or overpotential), and finally the premature battery death. This issue can be mitigated by employing the hierarchical electrode <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> with a bi-porous structure. The large pores in <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> improve <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> transport to sustain the stable reaction process, thus enhancing the discharge capacity of NALiO2B. To further boost the rate capability of NALiO2B, <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">BP</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> is partially infiltrated with electrolyte to form the multiphase (MP) electrode, where air bubbles exist and serve as <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> reservoirs. These bubbles effectively provide adequate <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> to support the extensive <span><span><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> consumption during the fast electrochemical reaction at high current densities. Consequently, NALiO2B with MP demonstrates the satisfactory discharge capacity and rate capability. This study provides valuable insights into the complex physics and reaction kinetics behind NALiO2B discharge, which facilitates the optimization and development of NALiO2B.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"11 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into discharge of non-aqueous Li–O2 battery using a three-dimensional electrochemical lattice Boltzmann model\",\"authors\":\"Timan Lei, Junyu Yang, Geng Wang, Jin Chen, Yinglong He, Kai H. Luo\",\"doi\":\"10.1016/j.cej.2024.157462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-aqueous Li–<span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> battery (NALiO2B) is a promising alternative to lithium-ion batteries, offering high theoretical energy density. However, its practical applications are hampered by limited understanding of the underlying mechanisms. In this study, a three-dimensional electrochemical lattice Boltzmann method is proposed to simulate the physical and electrochemical processes during NALiO2B discharge at the pore scale. The discharge performance of NALiO2B is evaluated for various electrode and electrolyte designs. It is found that the limited <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> diffusion within homogeneous electrodes is the primary cause of the declined reactive electrode surface area, the intensified electrochemical reaction (or overpotential), and finally the premature battery death. This issue can be mitigated by employing the hierarchical electrode <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> with a bi-porous structure. The large pores in <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> improve <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> transport to sustain the stable reaction process, thus enhancing the discharge capacity of NALiO2B. To further boost the rate capability of NALiO2B, <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">BP</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> is partially infiltrated with electrolyte to form the multiphase (MP) electrode, where air bubbles exist and serve as <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> reservoirs. These bubbles effectively provide adequate <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> to support the extensive <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub></math></script></span> consumption during the fast electrochemical reaction at high current densities. Consequently, NALiO2B with MP demonstrates the satisfactory discharge capacity and rate capability. This study provides valuable insights into the complex physics and reaction kinetics behind NALiO2B discharge, which facilitates the optimization and development of NALiO2B.\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157462\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157462","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Insight into discharge of non-aqueous Li–O2 battery using a three-dimensional electrochemical lattice Boltzmann model
Non-aqueous Li– battery (NALiO2B) is a promising alternative to lithium-ion batteries, offering high theoretical energy density. However, its practical applications are hampered by limited understanding of the underlying mechanisms. In this study, a three-dimensional electrochemical lattice Boltzmann method is proposed to simulate the physical and electrochemical processes during NALiO2B discharge at the pore scale. The discharge performance of NALiO2B is evaluated for various electrode and electrolyte designs. It is found that the limited diffusion within homogeneous electrodes is the primary cause of the declined reactive electrode surface area, the intensified electrochemical reaction (or overpotential), and finally the premature battery death. This issue can be mitigated by employing the hierarchical electrode with a bi-porous structure. The large pores in improve transport to sustain the stable reaction process, thus enhancing the discharge capacity of NALiO2B. To further boost the rate capability of NALiO2B, is partially infiltrated with electrolyte to form the multiphase (MP) electrode, where air bubbles exist and serve as reservoirs. These bubbles effectively provide adequate to support the extensive consumption during the fast electrochemical reaction at high current densities. Consequently, NALiO2B with MP demonstrates the satisfactory discharge capacity and rate capability. This study provides valuable insights into the complex physics and reaction kinetics behind NALiO2B discharge, which facilitates the optimization and development of NALiO2B.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research