Garvita Allabadi, Ana Lucic, Yu-Xiong Wang, Vikram Adve
{"title":"学会在野外用 SAM 检测新物种","authors":"Garvita Allabadi, Ana Lucic, Yu-Xiong Wang, Vikram Adve","doi":"10.1007/s11263-024-02234-0","DOIUrl":null,"url":null,"abstract":"<p>This paper tackles the limitation of a closed-world object detection model that was trained on one species. The expectation for this model is that it will not generalize well to recognize the instances of new species if they were present in the incoming data stream. We propose a novel object detection framework for this open-world setting that is suitable for applications that monitor wildlife, ocean life, livestock, plant phenotype and crops that typically feature one species in the image. Our method leverages labeled samples from one species in combination with a novelty detection method and Segment Anything Model, a vision foundation model, to (1) identify the presence of new species in unlabeled images, (2) localize their instances, and (3) <i>retrain</i> the initial model with the localized novel class instances. The resulting integrated system <i>assimilates</i> and <i>learns</i> from unlabeled samples of the new classes while not “forgetting” the original species the model was trained on. We demonstrate our findings on two different domains, (1) wildlife detection and (2) plant detection. Our method achieves an AP of 56.2 (for 4 novel species) to 61.6 (for 1 novel species) for wildlife domain, without relying on any ground truth data in the background.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"80 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Detect Novel Species with SAM in the Wild\",\"authors\":\"Garvita Allabadi, Ana Lucic, Yu-Xiong Wang, Vikram Adve\",\"doi\":\"10.1007/s11263-024-02234-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper tackles the limitation of a closed-world object detection model that was trained on one species. The expectation for this model is that it will not generalize well to recognize the instances of new species if they were present in the incoming data stream. We propose a novel object detection framework for this open-world setting that is suitable for applications that monitor wildlife, ocean life, livestock, plant phenotype and crops that typically feature one species in the image. Our method leverages labeled samples from one species in combination with a novelty detection method and Segment Anything Model, a vision foundation model, to (1) identify the presence of new species in unlabeled images, (2) localize their instances, and (3) <i>retrain</i> the initial model with the localized novel class instances. The resulting integrated system <i>assimilates</i> and <i>learns</i> from unlabeled samples of the new classes while not “forgetting” the original species the model was trained on. We demonstrate our findings on two different domains, (1) wildlife detection and (2) plant detection. Our method achieves an AP of 56.2 (for 4 novel species) to 61.6 (for 1 novel species) for wildlife domain, without relying on any ground truth data in the background.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02234-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02234-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning to Detect Novel Species with SAM in the Wild
This paper tackles the limitation of a closed-world object detection model that was trained on one species. The expectation for this model is that it will not generalize well to recognize the instances of new species if they were present in the incoming data stream. We propose a novel object detection framework for this open-world setting that is suitable for applications that monitor wildlife, ocean life, livestock, plant phenotype and crops that typically feature one species in the image. Our method leverages labeled samples from one species in combination with a novelty detection method and Segment Anything Model, a vision foundation model, to (1) identify the presence of new species in unlabeled images, (2) localize their instances, and (3) retrain the initial model with the localized novel class instances. The resulting integrated system assimilates and learns from unlabeled samples of the new classes while not “forgetting” the original species the model was trained on. We demonstrate our findings on two different domains, (1) wildlife detection and (2) plant detection. Our method achieves an AP of 56.2 (for 4 novel species) to 61.6 (for 1 novel species) for wildlife domain, without relying on any ground truth data in the background.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.