溶液和薄膜中多极共振金纳米棒的光学灵敏度

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kyoungweon Park, Richard Sottie, Eva Yazmin Santiago, Oscar Avalos-Ovando, Alexander Govorov, Richard A. Vaia
{"title":"溶液和薄膜中多极共振金纳米棒的光学灵敏度","authors":"Kyoungweon Park, Richard Sottie, Eva Yazmin Santiago, Oscar Avalos-Ovando, Alexander Govorov, Richard A. Vaia","doi":"10.1021/acs.jpcc.4c06417","DOIUrl":null,"url":null,"abstract":"Ensembles of large aspect ratio gold rods (AuNRs) are of technological interest due to their extreme optical cross-section at visible and near-infrared wavelengths (<i>C</i> ∼ 10<sup>4</sup>–10<sup>5</sup> nm<sup>2</sup>), ultrafast plasmonic and excitonic character (τ ∼ fs–ps), and responsivity to external fields affording ensemble alignment (ns−μs). With increasing aspect ratio and nanorod volume, plasmonic modes beyond dipolar emerge due to phase retardation. Such multipole resonances exhibit larger quality factors due to greater electromagnetic field localization, which is advantageous for optical signal routing, photon manipulation, or multistep processes such as second-harmonic generation, bioimaging, and photocatalysis. However, polydispersity of most as-synthesized AuNRs obscures these physicochemical behaviors across an ensemble, and thus at the macroscale. Herein, we present synthesis procedures for single-crystal AuNRs that simultaneously satisfy production scalability and ultralow dispersity with geometric tunability (aspect ratio:5 to 10; structural dispersity &lt;0.1). Quadrupole and octupole resonances are observed in solutions and nanocomposite films with &gt;10 nM AuNRs. The relationship between multipole resonance, aspect ratio, dielectric environment, temperature, and polarization agrees with theoretical predictions, confirming the foundation for the use of these effects in future technologies.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Sensitivity of Multipole Resonant Gold Nanorods in Solution and Film\",\"authors\":\"Kyoungweon Park, Richard Sottie, Eva Yazmin Santiago, Oscar Avalos-Ovando, Alexander Govorov, Richard A. Vaia\",\"doi\":\"10.1021/acs.jpcc.4c06417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensembles of large aspect ratio gold rods (AuNRs) are of technological interest due to their extreme optical cross-section at visible and near-infrared wavelengths (<i>C</i> ∼ 10<sup>4</sup>–10<sup>5</sup> nm<sup>2</sup>), ultrafast plasmonic and excitonic character (τ ∼ fs–ps), and responsivity to external fields affording ensemble alignment (ns−μs). With increasing aspect ratio and nanorod volume, plasmonic modes beyond dipolar emerge due to phase retardation. Such multipole resonances exhibit larger quality factors due to greater electromagnetic field localization, which is advantageous for optical signal routing, photon manipulation, or multistep processes such as second-harmonic generation, bioimaging, and photocatalysis. However, polydispersity of most as-synthesized AuNRs obscures these physicochemical behaviors across an ensemble, and thus at the macroscale. Herein, we present synthesis procedures for single-crystal AuNRs that simultaneously satisfy production scalability and ultralow dispersity with geometric tunability (aspect ratio:5 to 10; structural dispersity &lt;0.1). Quadrupole and octupole resonances are observed in solutions and nanocomposite films with &gt;10 nM AuNRs. The relationship between multipole resonance, aspect ratio, dielectric environment, temperature, and polarization agrees with theoretical predictions, confirming the foundation for the use of these effects in future technologies.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c06417\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大长宽比金棒(AuNRs)的集合体具有极高的可见光和近红外波长光学截面(C ∼ 104-105 nm2)、超快的等离子和激子特性(τ ∼ fs-ps)以及对外部场的响应性(ns-μs),因而在技术上具有重要意义。随着高宽比和纳米棒体积的增加,由于相位延迟,出现了超越双极的等离子模式。这种多极共振由于更强的电磁场定位而表现出更大的品质因数,对于光信号路由、光子操纵或二次谐波产生、生物成像和光催化等多步过程非常有利。然而,大多数合成的 AuNRs 的多分散性掩盖了它们在整个集合体中的物理化学行为,因此在宏观尺度上也是如此。在此,我们介绍了单晶 AuNRs 的合成过程,它同时满足了生产可扩展性和超低分散性以及几何可调性(长宽比:5 到 10;结构分散性 <0.1)。在含有 10 nM AuNRs 的溶液和纳米复合薄膜中观察到了四极和八极共振。多极共振、长宽比、介质环境、温度和极化之间的关系与理论预测一致,为在未来技术中使用这些效应奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optical Sensitivity of Multipole Resonant Gold Nanorods in Solution and Film

Optical Sensitivity of Multipole Resonant Gold Nanorods in Solution and Film
Ensembles of large aspect ratio gold rods (AuNRs) are of technological interest due to their extreme optical cross-section at visible and near-infrared wavelengths (C ∼ 104–105 nm2), ultrafast plasmonic and excitonic character (τ ∼ fs–ps), and responsivity to external fields affording ensemble alignment (ns−μs). With increasing aspect ratio and nanorod volume, plasmonic modes beyond dipolar emerge due to phase retardation. Such multipole resonances exhibit larger quality factors due to greater electromagnetic field localization, which is advantageous for optical signal routing, photon manipulation, or multistep processes such as second-harmonic generation, bioimaging, and photocatalysis. However, polydispersity of most as-synthesized AuNRs obscures these physicochemical behaviors across an ensemble, and thus at the macroscale. Herein, we present synthesis procedures for single-crystal AuNRs that simultaneously satisfy production scalability and ultralow dispersity with geometric tunability (aspect ratio:5 to 10; structural dispersity <0.1). Quadrupole and octupole resonances are observed in solutions and nanocomposite films with >10 nM AuNRs. The relationship between multipole resonance, aspect ratio, dielectric environment, temperature, and polarization agrees with theoretical predictions, confirming the foundation for the use of these effects in future technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信