Zhipeng Guo, Yanan Zhu, Aowei Zhou, Yang Zhao, Wanli Nie, Valentina Utochnikova, Hong Meng
{"title":"氮/羰基多共振热激活延迟荧光发射器窄带发射的起源:立体锁和振动耦合效应","authors":"Zhipeng Guo, Yanan Zhu, Aowei Zhou, Yang Zhao, Wanli Nie, Valentina Utochnikova, Hong Meng","doi":"10.1021/acs.jpclett.4c02423","DOIUrl":null,"url":null,"abstract":"The incorporation of <i>tert</i>-butyl groups and spiro-functionalization into C═O/N-embedded multiresonance thermally activated delayed fluorescence (MR-TADF) systems has yielded materials with superior narrowband emission and excellent color purity. To elucidate the mechanisms underlying the enhanced properties, we present a theoretical study of a series of fused nitrogen/carbonyl derivatives with narrower emission profiles. The key steric factors that contribute to narrowband emission were identified through energy decomposition analysis, induced by structural relaxation in states S<sub>0</sub> and S<sub>1</sub>. Additionally, we achieved potential narrower-band and deep-blue emission by targeting the suppression of vibrational coupling effects. This work provides compelling evidence that a 1-<i>tert</i>-butyl substitution, acting as an end lock, offers minimal reorganization energy and optimal structural stability when combined with a fused lock. Furthermore, new compounds such as 1tBuCZQ and 1tBuDQAO have been identified as promising MR-TADF emitters, delivering ultranarrowband emission as high-quality organic light-emitting diodes.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origins of Narrowband Emission in Nitrogen/Carbonyl Multiresonance Thermally Activated Delayed Fluorescence Emitters: Steric Locks and Vibrational Coupling Effects\",\"authors\":\"Zhipeng Guo, Yanan Zhu, Aowei Zhou, Yang Zhao, Wanli Nie, Valentina Utochnikova, Hong Meng\",\"doi\":\"10.1021/acs.jpclett.4c02423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incorporation of <i>tert</i>-butyl groups and spiro-functionalization into C═O/N-embedded multiresonance thermally activated delayed fluorescence (MR-TADF) systems has yielded materials with superior narrowband emission and excellent color purity. To elucidate the mechanisms underlying the enhanced properties, we present a theoretical study of a series of fused nitrogen/carbonyl derivatives with narrower emission profiles. The key steric factors that contribute to narrowband emission were identified through energy decomposition analysis, induced by structural relaxation in states S<sub>0</sub> and S<sub>1</sub>. Additionally, we achieved potential narrower-band and deep-blue emission by targeting the suppression of vibrational coupling effects. This work provides compelling evidence that a 1-<i>tert</i>-butyl substitution, acting as an end lock, offers minimal reorganization energy and optimal structural stability when combined with a fused lock. Furthermore, new compounds such as 1tBuCZQ and 1tBuDQAO have been identified as promising MR-TADF emitters, delivering ultranarrowband emission as high-quality organic light-emitting diodes.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02423\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02423","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Origins of Narrowband Emission in Nitrogen/Carbonyl Multiresonance Thermally Activated Delayed Fluorescence Emitters: Steric Locks and Vibrational Coupling Effects
The incorporation of tert-butyl groups and spiro-functionalization into C═O/N-embedded multiresonance thermally activated delayed fluorescence (MR-TADF) systems has yielded materials with superior narrowband emission and excellent color purity. To elucidate the mechanisms underlying the enhanced properties, we present a theoretical study of a series of fused nitrogen/carbonyl derivatives with narrower emission profiles. The key steric factors that contribute to narrowband emission were identified through energy decomposition analysis, induced by structural relaxation in states S0 and S1. Additionally, we achieved potential narrower-band and deep-blue emission by targeting the suppression of vibrational coupling effects. This work provides compelling evidence that a 1-tert-butyl substitution, acting as an end lock, offers minimal reorganization energy and optimal structural stability when combined with a fused lock. Furthermore, new compounds such as 1tBuCZQ and 1tBuDQAO have been identified as promising MR-TADF emitters, delivering ultranarrowband emission as high-quality organic light-emitting diodes.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.