用于无树枝状突起锂金属阳极的 Li+ 离子-偶极相互作用动态超分子弹性体界面层

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Chen, Xuetian Deng, Xin Jia, Yang Gao, Han Chen, Zhiqun Lin* and Shujiang Ding*, 
{"title":"用于无树枝状突起锂金属阳极的 Li+ 离子-偶极相互作用动态超分子弹性体界面层","authors":"Jing Chen,&nbsp;Xuetian Deng,&nbsp;Xin Jia,&nbsp;Yang Gao,&nbsp;Han Chen,&nbsp;Zhiqun Lin* and Shujiang Ding*,&nbsp;","doi":"10.1021/jacs.4c0876610.1021/jacs.4c08766","DOIUrl":null,"url":null,"abstract":"<p >The unstable lithium (Li)/electrolyte interface, causing inferior cycling efficiency and unrestrained dendrite growth, has severely hampered the practical deployment of Li metal batteries (LMBs), particularly in carbonate electrolytes. Herein, we present a robust approach capitalizing on a dynamic supramolecular elastomer (DSE) interface layer, which is capable of being reduced with Li metal to spontaneously form strong Li<sup>+</sup> ion-dipole interaction, thereby enhancing interfacial stability in carbonate electrolytes. The soft phase in the DSE structure enables fast Li<sup>+</sup> transport via loosely coordinated Li<sup>+</sup>–O interaction, while the hard phase, rich in electronegative lithiophilic sites, drives the generation of fast-ion-conducting solid electrolyte interface components, including Li<sub>3</sub>N and Li<sub>2</sub>S. Furthermore, the dynamically resilient DSE network composed of soft and hard phases protects Li anodes from electrolyte corrosion and accommodates volume changes during cycling. All features of the DSE layer synergistically facilitate uniform Li<sup>+</sup> deposition and suppress Li dendrite propagation, ensuring a stable and dendrite-free Li anode. Consequently, the symmetric Li||Li cell incorporating the DSE layer achieves cycling stability exceeding 6000 h under 1 mA cm<sup>–2</sup> and 1 mA h cm<sup>–2</sup> conditions. Furthermore, full cell pairing DSE/Li anode with LiFePO<sub>4</sub> (LFP) or high-voltage LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathodes exhibits high-efficiency Li deposition and cycling stability, even under constrained conditions of limited Li (40 μm) and ultrahigh loading NMC811 cathode (21.5 mg cm<sup>–2</sup>). This study underscores the effectiveness of the ion-dipole interaction-enabled DSE network in developing stable, high-energy-density LMBs.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30836–30847 30836–30847"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li+ Ion-Dipole Interaction-Enabled a Dynamic Supramolecular Elastomer Interface Layer for Dendrite-Free Lithium Metal Anodes\",\"authors\":\"Jing Chen,&nbsp;Xuetian Deng,&nbsp;Xin Jia,&nbsp;Yang Gao,&nbsp;Han Chen,&nbsp;Zhiqun Lin* and Shujiang Ding*,&nbsp;\",\"doi\":\"10.1021/jacs.4c0876610.1021/jacs.4c08766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The unstable lithium (Li)/electrolyte interface, causing inferior cycling efficiency and unrestrained dendrite growth, has severely hampered the practical deployment of Li metal batteries (LMBs), particularly in carbonate electrolytes. Herein, we present a robust approach capitalizing on a dynamic supramolecular elastomer (DSE) interface layer, which is capable of being reduced with Li metal to spontaneously form strong Li<sup>+</sup> ion-dipole interaction, thereby enhancing interfacial stability in carbonate electrolytes. The soft phase in the DSE structure enables fast Li<sup>+</sup> transport via loosely coordinated Li<sup>+</sup>–O interaction, while the hard phase, rich in electronegative lithiophilic sites, drives the generation of fast-ion-conducting solid electrolyte interface components, including Li<sub>3</sub>N and Li<sub>2</sub>S. Furthermore, the dynamically resilient DSE network composed of soft and hard phases protects Li anodes from electrolyte corrosion and accommodates volume changes during cycling. All features of the DSE layer synergistically facilitate uniform Li<sup>+</sup> deposition and suppress Li dendrite propagation, ensuring a stable and dendrite-free Li anode. Consequently, the symmetric Li||Li cell incorporating the DSE layer achieves cycling stability exceeding 6000 h under 1 mA cm<sup>–2</sup> and 1 mA h cm<sup>–2</sup> conditions. Furthermore, full cell pairing DSE/Li anode with LiFePO<sub>4</sub> (LFP) or high-voltage LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathodes exhibits high-efficiency Li deposition and cycling stability, even under constrained conditions of limited Li (40 μm) and ultrahigh loading NMC811 cathode (21.5 mg cm<sup>–2</sup>). This study underscores the effectiveness of the ion-dipole interaction-enabled DSE network in developing stable, high-energy-density LMBs.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 45\",\"pages\":\"30836–30847 30836–30847\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c08766\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c08766","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不稳定的锂(Li)/电解质界面会导致循环效率降低和枝晶不受限制地生长,严重阻碍了锂金属电池(LMB)的实际应用,尤其是在碳酸盐电解质中。在此,我们提出了一种利用动态超分子弹性体(DSE)界面层的稳健方法,该界面层能够与锂金属还原,自发形成强烈的锂+离子-偶极相互作用,从而增强碳酸盐电解质中的界面稳定性。DSE 结构中的软相通过松散配位的 Li+-O 相互作用实现了 Li+ 的快速传输,而富含亲锂电负性位点的硬相则推动了包括 Li3N 和 Li2S 在内的快速离子传导固体电解质界面成分的生成。此外,由软相和硬相组成的动态弹性 DSE 网络可保护锂阳极免受电解液腐蚀,并在循环过程中适应体积变化。DSE 层的所有特征协同促进了 Li+ 的均匀沉积,并抑制了锂枝晶的扩展,从而确保了锂阳极的稳定和无枝晶。因此,含有 DSE 层的对称锂电池在 1 mA cm-2 和 1 mA h cm-2 条件下的循环稳定性超过了 6000 小时。此外,将 DSE/Li 阳极与 LiFePO4 (LFP) 或高压 LiNi0.8Mn0.1Co0.1O2 (NMC811) 阴极配对的全电池,即使在有限锂(40 μm)和超高负载 NMC811 阴极(21.5 mg cm-2)的限制条件下,也能表现出高效的锂沉积和循环稳定性。这项研究强调了离子-偶极相互作用驱动的 DSE 网络在开发稳定、高能量密度 LMB 方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Li+ Ion-Dipole Interaction-Enabled a Dynamic Supramolecular Elastomer Interface Layer for Dendrite-Free Lithium Metal Anodes

Li+ Ion-Dipole Interaction-Enabled a Dynamic Supramolecular Elastomer Interface Layer for Dendrite-Free Lithium Metal Anodes

The unstable lithium (Li)/electrolyte interface, causing inferior cycling efficiency and unrestrained dendrite growth, has severely hampered the practical deployment of Li metal batteries (LMBs), particularly in carbonate electrolytes. Herein, we present a robust approach capitalizing on a dynamic supramolecular elastomer (DSE) interface layer, which is capable of being reduced with Li metal to spontaneously form strong Li+ ion-dipole interaction, thereby enhancing interfacial stability in carbonate electrolytes. The soft phase in the DSE structure enables fast Li+ transport via loosely coordinated Li+–O interaction, while the hard phase, rich in electronegative lithiophilic sites, drives the generation of fast-ion-conducting solid electrolyte interface components, including Li3N and Li2S. Furthermore, the dynamically resilient DSE network composed of soft and hard phases protects Li anodes from electrolyte corrosion and accommodates volume changes during cycling. All features of the DSE layer synergistically facilitate uniform Li+ deposition and suppress Li dendrite propagation, ensuring a stable and dendrite-free Li anode. Consequently, the symmetric Li||Li cell incorporating the DSE layer achieves cycling stability exceeding 6000 h under 1 mA cm–2 and 1 mA h cm–2 conditions. Furthermore, full cell pairing DSE/Li anode with LiFePO4 (LFP) or high-voltage LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes exhibits high-efficiency Li deposition and cycling stability, even under constrained conditions of limited Li (40 μm) and ultrahigh loading NMC811 cathode (21.5 mg cm–2). This study underscores the effectiveness of the ion-dipole interaction-enabled DSE network in developing stable, high-energy-density LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信