用于光电化学水氧化的水热生长卤素掺杂氧化锌纳米棒:实验和 DFT 见解

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Pooja Sahoo, Shashi B. Mishra, Suryakanti Debata, Akash Sharma, Binaya Kumar Sahu, Subash Padhan, R Thangavel and Byeong-Kyu Lee*, 
{"title":"用于光电化学水氧化的水热生长卤素掺杂氧化锌纳米棒:实验和 DFT 见解","authors":"Pooja Sahoo,&nbsp;Shashi B. Mishra,&nbsp;Suryakanti Debata,&nbsp;Akash Sharma,&nbsp;Binaya Kumar Sahu,&nbsp;Subash Padhan,&nbsp;R Thangavel and Byeong-Kyu Lee*,&nbsp;","doi":"10.1021/acs.jpcc.4c0371810.1021/acs.jpcc.4c03718","DOIUrl":null,"url":null,"abstract":"<p >This study demonstrates the photoelectrochemical (PEC) aspects of hydrothermally grown halogen-doped ZnO nanorods, analyzing their structural, morphological, optical, and electrical properties under visible light illumination. We find that halogen doping in the ZnO matrix significantly enhances the PEC water splitting performance. Among the four halogen atoms (Cl, Br, F, and I), Cl yields the highest photocurrent density of 0.75 mA/cm<sup>2</sup> at 1.5 V vs Ag/AgCl, nearly 5 times that of pristine ZnO nanorods (0.16 mA/cm<sup>2</sup>). This improvement in PEC activity is attributed to the increased light absorption, higher charge carrier density, and efficient separation of the photoexcited electron–hole pairs. Cl doping in ZnO increases the free electron concentration and tends to substitute oxygen vacancies, thereby reducing the recombination of photogenerated electron–hole pairs. In addition, the density functional theory calculations provide theoretical insights into the effect of halogen doping on the photocatalytic activity of ZnO. These findings pave the way for the design of efficient and cost-effective photoanode materials for PEC applications.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"128 44","pages":"18711–18723 18711–18723"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermally Grown Halogen-Doped ZnO Nanorods for Photoelectrochemical Water Oxidation: Experimental and DFT Insights\",\"authors\":\"Pooja Sahoo,&nbsp;Shashi B. Mishra,&nbsp;Suryakanti Debata,&nbsp;Akash Sharma,&nbsp;Binaya Kumar Sahu,&nbsp;Subash Padhan,&nbsp;R Thangavel and Byeong-Kyu Lee*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0371810.1021/acs.jpcc.4c03718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study demonstrates the photoelectrochemical (PEC) aspects of hydrothermally grown halogen-doped ZnO nanorods, analyzing their structural, morphological, optical, and electrical properties under visible light illumination. We find that halogen doping in the ZnO matrix significantly enhances the PEC water splitting performance. Among the four halogen atoms (Cl, Br, F, and I), Cl yields the highest photocurrent density of 0.75 mA/cm<sup>2</sup> at 1.5 V vs Ag/AgCl, nearly 5 times that of pristine ZnO nanorods (0.16 mA/cm<sup>2</sup>). This improvement in PEC activity is attributed to the increased light absorption, higher charge carrier density, and efficient separation of the photoexcited electron–hole pairs. Cl doping in ZnO increases the free electron concentration and tends to substitute oxygen vacancies, thereby reducing the recombination of photogenerated electron–hole pairs. In addition, the density functional theory calculations provide theoretical insights into the effect of halogen doping on the photocatalytic activity of ZnO. These findings pave the way for the design of efficient and cost-effective photoanode materials for PEC applications.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"128 44\",\"pages\":\"18711–18723 18711–18723\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c03718\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c03718","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了水热法生长的掺卤氧化锌纳米棒的光电化学(PEC)特性,分析了其在可见光照射下的结构、形态、光学和电学特性。我们发现,在氧化锌基体中掺杂卤素能显著提高 PEC 水分离性能。在四种卤素原子(Cl、Br、F 和 I)中,Cl 产生的光电流密度最高,在 1.5 V 对 Ag/AgCl 时为 0.75 mA/cm2,是原始 ZnO 纳米棒(0.16 mA/cm2)的近 5 倍。PEC 活性的提高归因于光吸收的增加、电荷载流子密度的提高以及光激发电子-空穴对的有效分离。在氧化锌中掺入 Cl 会增加自由电子浓度,并倾向于取代氧空位,从而减少光激发电子-空穴对的重组。此外,密度泛函理论计算还从理论上揭示了卤素掺杂对氧化锌光催化活性的影响。这些发现为设计用于 PEC 应用的高效、经济的光阳极材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrothermally Grown Halogen-Doped ZnO Nanorods for Photoelectrochemical Water Oxidation: Experimental and DFT Insights

Hydrothermally Grown Halogen-Doped ZnO Nanorods for Photoelectrochemical Water Oxidation: Experimental and DFT Insights

This study demonstrates the photoelectrochemical (PEC) aspects of hydrothermally grown halogen-doped ZnO nanorods, analyzing their structural, morphological, optical, and electrical properties under visible light illumination. We find that halogen doping in the ZnO matrix significantly enhances the PEC water splitting performance. Among the four halogen atoms (Cl, Br, F, and I), Cl yields the highest photocurrent density of 0.75 mA/cm2 at 1.5 V vs Ag/AgCl, nearly 5 times that of pristine ZnO nanorods (0.16 mA/cm2). This improvement in PEC activity is attributed to the increased light absorption, higher charge carrier density, and efficient separation of the photoexcited electron–hole pairs. Cl doping in ZnO increases the free electron concentration and tends to substitute oxygen vacancies, thereby reducing the recombination of photogenerated electron–hole pairs. In addition, the density functional theory calculations provide theoretical insights into the effect of halogen doping on the photocatalytic activity of ZnO. These findings pave the way for the design of efficient and cost-effective photoanode materials for PEC applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信