Yili Chen, Zheng Wan*, Yangyang Li, Xiao He*, Xian Wei and Jun Han*,
{"title":"基于图形曲率流的掩码注意力","authors":"Yili Chen, Zheng Wan*, Yangyang Li, Xiao He*, Xian Wei and Jun Han*, ","doi":"10.1021/acs.jcim.4c0161610.1021/acs.jcim.4c01616","DOIUrl":null,"url":null,"abstract":"<p >Graph neural networks (GNNs) have revolutionized drug discovery in chemistry and biology, enhancing efficiency and reducing resource demands. However, classical GNNs often struggle to capture long-range dependencies due to challenges like oversmoothing and oversquashing. Graph Transformers address these issues by employing global self-attention mechanisms that allow direct information exchange between any pair of nodes, enabling the modeling of long-range interactions. Despite this, Graph Transformers often face difficulties in capturing the nuanced structural information on graphs. To overcome these challenges, we introduce the CurvFlow-Transformer, a novel graph Transformer model incorporating a curvature flow-based masked attention mechanism. By leveraging a topologically enhanced mask matrix, the attention layer can effectively detect subtle structural differences within graphs, balancing the focus between global mutual information and local structural details of molecules. The CurvFlow-Transformer demonstrates superior performance on the MoleculeNet data set, surpassing several state-of-the-art models across various tasks. Moreover, the model provides unique insights into the relationship between molecular structure and chemical properties by analyzing the attention heat coefficients of individual atoms.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 21","pages":"8153–8163 8153–8163"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Curvature Flow-Based Masked Attention\",\"authors\":\"Yili Chen, Zheng Wan*, Yangyang Li, Xiao He*, Xian Wei and Jun Han*, \",\"doi\":\"10.1021/acs.jcim.4c0161610.1021/acs.jcim.4c01616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Graph neural networks (GNNs) have revolutionized drug discovery in chemistry and biology, enhancing efficiency and reducing resource demands. However, classical GNNs often struggle to capture long-range dependencies due to challenges like oversmoothing and oversquashing. Graph Transformers address these issues by employing global self-attention mechanisms that allow direct information exchange between any pair of nodes, enabling the modeling of long-range interactions. Despite this, Graph Transformers often face difficulties in capturing the nuanced structural information on graphs. To overcome these challenges, we introduce the CurvFlow-Transformer, a novel graph Transformer model incorporating a curvature flow-based masked attention mechanism. By leveraging a topologically enhanced mask matrix, the attention layer can effectively detect subtle structural differences within graphs, balancing the focus between global mutual information and local structural details of molecules. The CurvFlow-Transformer demonstrates superior performance on the MoleculeNet data set, surpassing several state-of-the-art models across various tasks. Moreover, the model provides unique insights into the relationship between molecular structure and chemical properties by analyzing the attention heat coefficients of individual atoms.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 21\",\"pages\":\"8153–8163 8153–8163\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01616\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01616","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Graph neural networks (GNNs) have revolutionized drug discovery in chemistry and biology, enhancing efficiency and reducing resource demands. However, classical GNNs often struggle to capture long-range dependencies due to challenges like oversmoothing and oversquashing. Graph Transformers address these issues by employing global self-attention mechanisms that allow direct information exchange between any pair of nodes, enabling the modeling of long-range interactions. Despite this, Graph Transformers often face difficulties in capturing the nuanced structural information on graphs. To overcome these challenges, we introduce the CurvFlow-Transformer, a novel graph Transformer model incorporating a curvature flow-based masked attention mechanism. By leveraging a topologically enhanced mask matrix, the attention layer can effectively detect subtle structural differences within graphs, balancing the focus between global mutual information and local structural details of molecules. The CurvFlow-Transformer demonstrates superior performance on the MoleculeNet data set, surpassing several state-of-the-art models across various tasks. Moreover, the model provides unique insights into the relationship between molecular structure and chemical properties by analyzing the attention heat coefficients of individual atoms.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.