Tae Ho Yun, Taeyong Kim, Yunjae Hwang, Ninad B. Velhal, Hyung Wook Park*, Changyong Yim* and Jisoo Kim*,
{"title":"激光辅助快速制造氢氧化钴@碳纤维复合材料,用于高性能、坚固的结构性超级电容器","authors":"Tae Ho Yun, Taeyong Kim, Yunjae Hwang, Ninad B. Velhal, Hyung Wook Park*, Changyong Yim* and Jisoo Kim*, ","doi":"10.1021/acsaem.4c0226110.1021/acsaem.4c02261","DOIUrl":null,"url":null,"abstract":"<p >Conventional supercapacitor electrodes often rely on time-consuming hydrothermal methods to create nanostructures. In this study, a laser-assisted process was utilized to fabricate cobalt hydroxide on a carbon fiber (CF) composite, achieving a mechanically stable structural capacitor (SSC) within 50 min. Intensive CO<sub>2</sub> laser irradiation facilitated the rapid deposition and growth of diverse nanoarchitectures on the CF substrate. The outstanding performance of the Co(OH)<sub>2</sub>@CF electrode was demonstrated by its rate capability, with a cyclic stability of 96.3% maintained through 15,000 cycles and a Coulombic efficiency of 99.5%. A high specific capacitance of 1448.20 F g<sup>–1</sup> was also observed. The unique morphology of the Co(OH)<sub>2</sub>@CF electrode enabled efficient charge storage with a high diffusion contribution, even at 50 mV s<sup>–1</sup>. The robust SSC device remained stable under external forces and thus showed promise in addressing the sensitivity issues encountered with current supercapacitor devices.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 21","pages":"10120–10133 10120–10133"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-Assisted Rapid Fabrication of Cobalt Hydroxide@Carbon Fiber Composites for High-Performance, Robust Structural Supercapacitors\",\"authors\":\"Tae Ho Yun, Taeyong Kim, Yunjae Hwang, Ninad B. Velhal, Hyung Wook Park*, Changyong Yim* and Jisoo Kim*, \",\"doi\":\"10.1021/acsaem.4c0226110.1021/acsaem.4c02261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Conventional supercapacitor electrodes often rely on time-consuming hydrothermal methods to create nanostructures. In this study, a laser-assisted process was utilized to fabricate cobalt hydroxide on a carbon fiber (CF) composite, achieving a mechanically stable structural capacitor (SSC) within 50 min. Intensive CO<sub>2</sub> laser irradiation facilitated the rapid deposition and growth of diverse nanoarchitectures on the CF substrate. The outstanding performance of the Co(OH)<sub>2</sub>@CF electrode was demonstrated by its rate capability, with a cyclic stability of 96.3% maintained through 15,000 cycles and a Coulombic efficiency of 99.5%. A high specific capacitance of 1448.20 F g<sup>–1</sup> was also observed. The unique morphology of the Co(OH)<sub>2</sub>@CF electrode enabled efficient charge storage with a high diffusion contribution, even at 50 mV s<sup>–1</sup>. The robust SSC device remained stable under external forces and thus showed promise in addressing the sensitivity issues encountered with current supercapacitor devices.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"7 21\",\"pages\":\"10120–10133 10120–10133\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02261\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02261","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Laser-Assisted Rapid Fabrication of Cobalt Hydroxide@Carbon Fiber Composites for High-Performance, Robust Structural Supercapacitors
Conventional supercapacitor electrodes often rely on time-consuming hydrothermal methods to create nanostructures. In this study, a laser-assisted process was utilized to fabricate cobalt hydroxide on a carbon fiber (CF) composite, achieving a mechanically stable structural capacitor (SSC) within 50 min. Intensive CO2 laser irradiation facilitated the rapid deposition and growth of diverse nanoarchitectures on the CF substrate. The outstanding performance of the Co(OH)2@CF electrode was demonstrated by its rate capability, with a cyclic stability of 96.3% maintained through 15,000 cycles and a Coulombic efficiency of 99.5%. A high specific capacitance of 1448.20 F g–1 was also observed. The unique morphology of the Co(OH)2@CF electrode enabled efficient charge storage with a high diffusion contribution, even at 50 mV s–1. The robust SSC device remained stable under external forces and thus showed promise in addressing the sensitivity issues encountered with current supercapacitor devices.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.