利用透射电子显微镜在单个细胞外囊泡水平分析细胞外囊泡相关 DNA。

Thupten Tsering, Amélie Nadeau, Janusz Rak, Julia V. Burnier
{"title":"利用透射电子显微镜在单个细胞外囊泡水平分析细胞外囊泡相关 DNA。","authors":"Thupten Tsering,&nbsp;Amélie Nadeau,&nbsp;Janusz Rak,&nbsp;Julia V. Burnier","doi":"10.1002/cpz1.70047","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) play an important role in cell-cell communication, carrying bioactive molecules including DNA. EV-associated DNA (EV-DNA) has created enormous interest in the field of biomarkers, particularly related to liquid biopsy. However, its analysis is challenging due to the nanoscale structure of EVs, the low abundance of EV-DNA, and surrounding biogenetic debate. Therefore, novel protocols to enhance the accurate detection of EV-DNA are essential to study its role in normal physiology and disease states. Here, we provide two protocols for confirming the presence of EV-DNA from biological samples. In the first protocol, ultrathin sectioning of EVs is combined with immunogold labeling to detect the presence of double-stranded (ds) DNA within the EV lumen using transmission electron microscopy (TEM). In the second protocol, whole-mount EV immunogold labeling allows detailed morphological analysis of EVs and their surface-associated DNA. Using TEM imaging, we have demonstrated that cancer-cell-derived individual EVs exhibit simultaneous positivity for dsDNA and the EV surface protein tetraspanin 9. We believe that this method can be used to label any proteins of interest inside as well as on the surface of EVs. This can aid in the characterization of single EVs and in the identification and verification of EV-associated biomarkers. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: EV isolation from cell-culture-conditioned medium, EV embedding, ultrathin sectioning, labeling, and imaging</p><p><b>Basic Protocol 2</b>: Whole-mount immunolabeling of EV-DNA</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpz1.70047","citationCount":"0","resultStr":"{\"title\":\"Analyzing Extracellular Vesicle-associated DNA Using Transmission Electron Microscopy at the Single EV-level\",\"authors\":\"Thupten Tsering,&nbsp;Amélie Nadeau,&nbsp;Janusz Rak,&nbsp;Julia V. Burnier\",\"doi\":\"10.1002/cpz1.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular vesicles (EVs) play an important role in cell-cell communication, carrying bioactive molecules including DNA. EV-associated DNA (EV-DNA) has created enormous interest in the field of biomarkers, particularly related to liquid biopsy. However, its analysis is challenging due to the nanoscale structure of EVs, the low abundance of EV-DNA, and surrounding biogenetic debate. Therefore, novel protocols to enhance the accurate detection of EV-DNA are essential to study its role in normal physiology and disease states. Here, we provide two protocols for confirming the presence of EV-DNA from biological samples. In the first protocol, ultrathin sectioning of EVs is combined with immunogold labeling to detect the presence of double-stranded (ds) DNA within the EV lumen using transmission electron microscopy (TEM). In the second protocol, whole-mount EV immunogold labeling allows detailed morphological analysis of EVs and their surface-associated DNA. Using TEM imaging, we have demonstrated that cancer-cell-derived individual EVs exhibit simultaneous positivity for dsDNA and the EV surface protein tetraspanin 9. We believe that this method can be used to label any proteins of interest inside as well as on the surface of EVs. This can aid in the characterization of single EVs and in the identification and verification of EV-associated biomarkers. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: EV isolation from cell-culture-conditioned medium, EV embedding, ultrathin sectioning, labeling, and imaging</p><p><b>Basic Protocol 2</b>: Whole-mount immunolabeling of EV-DNA</p>\",\"PeriodicalId\":93970,\"journal\":{\"name\":\"Current protocols\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpz1.70047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)在细胞与细胞之间的交流中发挥着重要作用,携带着包括 DNA 在内的生物活性分子。EV相关DNA(EV-DNA)在生物标记领域引起了极大的兴趣,尤其是与液体活检相关的领域。然而,由于 EVs 的纳米级结构、EV-DNA 的低丰度以及围绕其生物遗传学的争论,对其进行分析具有挑战性。因此,要研究 EV-DNA 在正常生理和疾病状态中的作用,就必须采用新的方案来提高 EV-DNA 的准确检测率。在此,我们提供了两种从生物样本中确认 EV-DNA 存在的方案。在第一种方案中,EV 的超薄切片与免疫金标记相结合,利用透射电子显微镜(TEM)检测 EV 管腔中是否存在双链 (ds) DNA。在第二种方案中,通过对整装 EV 进行免疫金标记,可以对 EV 及其表面相关 DNA 进行详细的形态学分析。通过 TEM 成像,我们证明了癌细胞衍生的单个 EV 同时表现出 dsDNA 和 EV 表面蛋白 tetraspanin 9 阳性。我们相信,这种方法可用于标记 EV 内部和表面的任何相关蛋白质。这有助于单个 EV 的表征以及 EV 相关生物标记物的鉴定和验证。© 2024 作者。当前协议》由 Wiley Periodicals LLC 出版。基本方案 1:从细胞培养调节培养基中分离 EV、EV 包埋、超薄切片、标记和成像 基本方案 2:EV-DNA 的整装免疫标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analyzing Extracellular Vesicle-associated DNA Using Transmission Electron Microscopy at the Single EV-level

Analyzing Extracellular Vesicle-associated DNA Using Transmission Electron Microscopy at the Single EV-level

Extracellular vesicles (EVs) play an important role in cell-cell communication, carrying bioactive molecules including DNA. EV-associated DNA (EV-DNA) has created enormous interest in the field of biomarkers, particularly related to liquid biopsy. However, its analysis is challenging due to the nanoscale structure of EVs, the low abundance of EV-DNA, and surrounding biogenetic debate. Therefore, novel protocols to enhance the accurate detection of EV-DNA are essential to study its role in normal physiology and disease states. Here, we provide two protocols for confirming the presence of EV-DNA from biological samples. In the first protocol, ultrathin sectioning of EVs is combined with immunogold labeling to detect the presence of double-stranded (ds) DNA within the EV lumen using transmission electron microscopy (TEM). In the second protocol, whole-mount EV immunogold labeling allows detailed morphological analysis of EVs and their surface-associated DNA. Using TEM imaging, we have demonstrated that cancer-cell-derived individual EVs exhibit simultaneous positivity for dsDNA and the EV surface protein tetraspanin 9. We believe that this method can be used to label any proteins of interest inside as well as on the surface of EVs. This can aid in the characterization of single EVs and in the identification and verification of EV-associated biomarkers. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.

Basic Protocol 1: EV isolation from cell-culture-conditioned medium, EV embedding, ultrathin sectioning, labeling, and imaging

Basic Protocol 2: Whole-mount immunolabeling of EV-DNA

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信