68Ga-NOTA-UBI-29-41的放射合成验证和首次人体剂量测定:概念验证研究。

IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Parul Thakral, Nishant Rana, Navneet Singh, Subha Shankar Das, Mrinalini Koley, Jatin Gupta, Dharmender Malik, Ishita Sen
{"title":"68Ga-NOTA-UBI-29-41的放射合成验证和首次人体剂量测定:概念验证研究。","authors":"Parul Thakral, Nishant Rana, Navneet Singh, Subha Shankar Das, Mrinalini Koley, Jatin Gupta, Dharmender Malik, Ishita Sen","doi":"10.1089/cbr.2024.0082","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Antimicrobial peptides (AMPs) such as UBI-29-41 offer a distinctive approach for precise detection due to their unique interactions with bacteria and makes them promising candidates for specific and selective imaging. The study was aimed to corroborate the in-house manual synthesis of <sup>68</sup>Ga-NOTA-UBI-29-41, evaluate its uptake in patients with suspected infection, and estimate of patient-specific dosimetry to ensure optimal clinical application. <b><i>Materials and Methods:</i></b> <sup>68</sup>Ga-NOTA-UBI-29-41 was synthesized by using a variable amount of UBI-29-41 (60-90 μg) to 555 MBq of Ga-68 in 0.05 M Hydrochloric acid (HCl) and heating the reaction sample for 12 min at 90°C at pH: 3.5-4 to obtain the radiopeptide with high yield and high radiochemical purity (RCP). <sup>68</sup>Ga-NOTA-UBI-29-41 positron emission tomography/Computed tomography (CT) scans at variable timepoints were done to evaluate its biodistribution and maximum uptake time. Furthermore, patient-specific dosimetric estimation was done using the HERMES software. <b><i>Results:</i></b> A total of 5 μg/37 MBq (5 μg/mCi) of NOTA-UBI-29-41 for 12 min at 90°C were the optimal parameters to obtain 88%-90% of yield and 98%-99 % of RCP. <sup>68</sup>Ga-NOTA-UBI-29-41 showed expeditious blood clearance and high renal excretion. The optimal time for imaging of infection with <sup>68</sup>Ga-NOTA-UBI-29-41 was found to be at 60 min postinjection (<i>n</i> = 8). The critical organ was the urinary bladder, receiving an average dose of 138.02 ± 45.92 µSv/MBq, followed by 53.81 ± 13.72 µSv/MBq for kidneys with a mean effective dose of 1.52 ± 0.64 mSv. <b><i>Conclusion:</i></b> The protocol for in-house manual labeling of <sup>68</sup>Ga-NOTA-UBI-29-41 was reproducible, providing high yield and RCP. <sup>68</sup>Ga-NOTA-UBI-29-41 administration was found to be safe and nontoxic. The favorable biodistribution and the first-in-human patient-specific dosimetry ensure optimal clinical application.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of Radiosynthesis and First in-Human Dosimetry of <sup>68</sup>Ga-NOTA-UBI-29-41: A Proof of Concept Study.\",\"authors\":\"Parul Thakral, Nishant Rana, Navneet Singh, Subha Shankar Das, Mrinalini Koley, Jatin Gupta, Dharmender Malik, Ishita Sen\",\"doi\":\"10.1089/cbr.2024.0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Antimicrobial peptides (AMPs) such as UBI-29-41 offer a distinctive approach for precise detection due to their unique interactions with bacteria and makes them promising candidates for specific and selective imaging. The study was aimed to corroborate the in-house manual synthesis of <sup>68</sup>Ga-NOTA-UBI-29-41, evaluate its uptake in patients with suspected infection, and estimate of patient-specific dosimetry to ensure optimal clinical application. <b><i>Materials and Methods:</i></b> <sup>68</sup>Ga-NOTA-UBI-29-41 was synthesized by using a variable amount of UBI-29-41 (60-90 μg) to 555 MBq of Ga-68 in 0.05 M Hydrochloric acid (HCl) and heating the reaction sample for 12 min at 90°C at pH: 3.5-4 to obtain the radiopeptide with high yield and high radiochemical purity (RCP). <sup>68</sup>Ga-NOTA-UBI-29-41 positron emission tomography/Computed tomography (CT) scans at variable timepoints were done to evaluate its biodistribution and maximum uptake time. Furthermore, patient-specific dosimetric estimation was done using the HERMES software. <b><i>Results:</i></b> A total of 5 μg/37 MBq (5 μg/mCi) of NOTA-UBI-29-41 for 12 min at 90°C were the optimal parameters to obtain 88%-90% of yield and 98%-99 % of RCP. <sup>68</sup>Ga-NOTA-UBI-29-41 showed expeditious blood clearance and high renal excretion. The optimal time for imaging of infection with <sup>68</sup>Ga-NOTA-UBI-29-41 was found to be at 60 min postinjection (<i>n</i> = 8). The critical organ was the urinary bladder, receiving an average dose of 138.02 ± 45.92 µSv/MBq, followed by 53.81 ± 13.72 µSv/MBq for kidneys with a mean effective dose of 1.52 ± 0.64 mSv. <b><i>Conclusion:</i></b> The protocol for in-house manual labeling of <sup>68</sup>Ga-NOTA-UBI-29-41 was reproducible, providing high yield and RCP. <sup>68</sup>Ga-NOTA-UBI-29-41 administration was found to be safe and nontoxic. The favorable biodistribution and the first-in-human patient-specific dosimetry ensure optimal clinical application.</p>\",\"PeriodicalId\":55277,\"journal\":{\"name\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cbr.2024.0082\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2024.0082","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:UBI-29-41 等抗菌肽(AMPs)因其与细菌的独特相互作用而为精确检测提供了一种独特的方法,并使其成为特异性和选择性成像的理想候选物质。本研究旨在证实 68Ga-NOTA-UBI-29-41 的内部人工合成,评估其在疑似感染患者中的吸收情况,并估算患者特异性剂量,以确保最佳临床应用。材料与方法:68Ga-NOTA-UBI-29-41的合成方法是:在0.05 M盐酸(HCl)中加入一定量的UBI-29-41(60-90 μg)和555 MBq的Ga-68,在90°C、pH值为3.5-4的条件下加热12分钟,以获得高产率和高放射化学纯度(RCP)的放射多肽。对 68Ga-NOTA-UBI-29-41 正电子发射断层扫描/计算机断层扫描(CT)进行了不同时间点的扫描,以评估其生物分布和最大摄取时间。此外,还使用 HERMES 软件对患者的具体剂量进行了估算。结果:在90°C温度下对NOTA-UBI-29-41进行总计5 μg/37 MBq(5 μg/mCi)、12分钟的剂量释放是获得88%-90%的产率和98%-99%的RCP的最佳参数。68Ga-NOTA-UBI-29-41显示出快速的血液清除率和较高的肾脏排泄率。使用 68Ga-NOTA-UBI-29-41 进行感染成像的最佳时间是注射后 60 分钟(n = 8)。关键器官是膀胱,平均剂量为 138.02 ± 45.92 µSv/MBq,其次是肾脏 53.81 ± 13.72 µSv/MBq,平均有效剂量为 1.52 ± 0.64 mSv。结论68Ga-NOTA-UBI-29-41 的内部手动标记方案具有可重复性,可提供高产率和 RCP。68Ga-NOTA-UBI-29-41的使用安全无毒。良好的生物分布和首次用于人体的特定患者剂量测定确保了最佳的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of Radiosynthesis and First in-Human Dosimetry of 68Ga-NOTA-UBI-29-41: A Proof of Concept Study.

Background: Antimicrobial peptides (AMPs) such as UBI-29-41 offer a distinctive approach for precise detection due to their unique interactions with bacteria and makes them promising candidates for specific and selective imaging. The study was aimed to corroborate the in-house manual synthesis of 68Ga-NOTA-UBI-29-41, evaluate its uptake in patients with suspected infection, and estimate of patient-specific dosimetry to ensure optimal clinical application. Materials and Methods: 68Ga-NOTA-UBI-29-41 was synthesized by using a variable amount of UBI-29-41 (60-90 μg) to 555 MBq of Ga-68 in 0.05 M Hydrochloric acid (HCl) and heating the reaction sample for 12 min at 90°C at pH: 3.5-4 to obtain the radiopeptide with high yield and high radiochemical purity (RCP). 68Ga-NOTA-UBI-29-41 positron emission tomography/Computed tomography (CT) scans at variable timepoints were done to evaluate its biodistribution and maximum uptake time. Furthermore, patient-specific dosimetric estimation was done using the HERMES software. Results: A total of 5 μg/37 MBq (5 μg/mCi) of NOTA-UBI-29-41 for 12 min at 90°C were the optimal parameters to obtain 88%-90% of yield and 98%-99 % of RCP. 68Ga-NOTA-UBI-29-41 showed expeditious blood clearance and high renal excretion. The optimal time for imaging of infection with 68Ga-NOTA-UBI-29-41 was found to be at 60 min postinjection (n = 8). The critical organ was the urinary bladder, receiving an average dose of 138.02 ± 45.92 µSv/MBq, followed by 53.81 ± 13.72 µSv/MBq for kidneys with a mean effective dose of 1.52 ± 0.64 mSv. Conclusion: The protocol for in-house manual labeling of 68Ga-NOTA-UBI-29-41 was reproducible, providing high yield and RCP. 68Ga-NOTA-UBI-29-41 administration was found to be safe and nontoxic. The favorable biodistribution and the first-in-human patient-specific dosimetry ensure optimal clinical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
2.90%
发文量
87
审稿时长
3 months
期刊介绍: Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies. The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信