{"title":"利用基于变压器的深度学习模型实现锥形束 CT 到 CT 图像转换,用于前列腺癌自适应放疗。","authors":"Yuhei Koike, Hideki Takegawa, Yusuke Anetai, Satoaki Nakamura, Ken Yoshida, Asami Yoshida, Midori Yui, Kazuki Hirota, Kenichi Ueda, Noboru Tanigawa","doi":"10.1007/s10278-024-01312-6","DOIUrl":null,"url":null,"abstract":"<p><p>Cone-beam computed tomography (CBCT) is widely utilized in image-guided radiation therapy; however, its image quality is poor compared to planning CT (pCT), thus restricting its utility for adaptive radiotherapy (ART). Our objective was to enhance CBCT image quality utilizing a transformer-based deep learning model, SwinUNETR, which we compared with a conventional convolutional neural network (CNN) model, U-net. This retrospective study involved 260 patients undergoing prostate radiotherapy, with 245 patients used for training and 15 patients reserved as an independent hold-out test dataset. Employing a CycleGAN framework, we generated synthetic CT (sCT) images from CBCT images, employing SwinUNETR and U-net as generators. We evaluated sCT image quality and assessed its dosimetric impact for photon therapy through gamma analysis and dose-volume histogram (DVH) comparisons. The mean absolute error values for the CT numbers, calculated using all voxels within the patient's body contour and taking the pCT images as a reference, were 84.07, 73.49, and 64.69 Hounsfield units for CBCT, U-net, and SwinUNETR images, respectively. Gamma analysis revealed superior agreement between the dose on the pCT images and on the SwinUNETR-based sCT plans compared to those based on U-net. DVH parameters calculated on the SwinUNETR-based sCT deviated by < 1% from those in pCT plans. Our study showed that, compared to the U-net model, SwinUNETR could proficiently generate more precise sCT images from CBCT images, facilitating more accurate dose calculations. This study demonstrates the superiority of transformer-based models over conventional CNN-based approaches for CBCT-to-CT translation, contributing to the advancement of image synthesis techniques in ART.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cone-Beam CT to CT Image Translation Using a Transformer-Based Deep Learning Model for Prostate Cancer Adaptive Radiotherapy.\",\"authors\":\"Yuhei Koike, Hideki Takegawa, Yusuke Anetai, Satoaki Nakamura, Ken Yoshida, Asami Yoshida, Midori Yui, Kazuki Hirota, Kenichi Ueda, Noboru Tanigawa\",\"doi\":\"10.1007/s10278-024-01312-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cone-beam computed tomography (CBCT) is widely utilized in image-guided radiation therapy; however, its image quality is poor compared to planning CT (pCT), thus restricting its utility for adaptive radiotherapy (ART). Our objective was to enhance CBCT image quality utilizing a transformer-based deep learning model, SwinUNETR, which we compared with a conventional convolutional neural network (CNN) model, U-net. This retrospective study involved 260 patients undergoing prostate radiotherapy, with 245 patients used for training and 15 patients reserved as an independent hold-out test dataset. Employing a CycleGAN framework, we generated synthetic CT (sCT) images from CBCT images, employing SwinUNETR and U-net as generators. We evaluated sCT image quality and assessed its dosimetric impact for photon therapy through gamma analysis and dose-volume histogram (DVH) comparisons. The mean absolute error values for the CT numbers, calculated using all voxels within the patient's body contour and taking the pCT images as a reference, were 84.07, 73.49, and 64.69 Hounsfield units for CBCT, U-net, and SwinUNETR images, respectively. Gamma analysis revealed superior agreement between the dose on the pCT images and on the SwinUNETR-based sCT plans compared to those based on U-net. DVH parameters calculated on the SwinUNETR-based sCT deviated by < 1% from those in pCT plans. Our study showed that, compared to the U-net model, SwinUNETR could proficiently generate more precise sCT images from CBCT images, facilitating more accurate dose calculations. This study demonstrates the superiority of transformer-based models over conventional CNN-based approaches for CBCT-to-CT translation, contributing to the advancement of image synthesis techniques in ART.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01312-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01312-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cone-Beam CT to CT Image Translation Using a Transformer-Based Deep Learning Model for Prostate Cancer Adaptive Radiotherapy.
Cone-beam computed tomography (CBCT) is widely utilized in image-guided radiation therapy; however, its image quality is poor compared to planning CT (pCT), thus restricting its utility for adaptive radiotherapy (ART). Our objective was to enhance CBCT image quality utilizing a transformer-based deep learning model, SwinUNETR, which we compared with a conventional convolutional neural network (CNN) model, U-net. This retrospective study involved 260 patients undergoing prostate radiotherapy, with 245 patients used for training and 15 patients reserved as an independent hold-out test dataset. Employing a CycleGAN framework, we generated synthetic CT (sCT) images from CBCT images, employing SwinUNETR and U-net as generators. We evaluated sCT image quality and assessed its dosimetric impact for photon therapy through gamma analysis and dose-volume histogram (DVH) comparisons. The mean absolute error values for the CT numbers, calculated using all voxels within the patient's body contour and taking the pCT images as a reference, were 84.07, 73.49, and 64.69 Hounsfield units for CBCT, U-net, and SwinUNETR images, respectively. Gamma analysis revealed superior agreement between the dose on the pCT images and on the SwinUNETR-based sCT plans compared to those based on U-net. DVH parameters calculated on the SwinUNETR-based sCT deviated by < 1% from those in pCT plans. Our study showed that, compared to the U-net model, SwinUNETR could proficiently generate more precise sCT images from CBCT images, facilitating more accurate dose calculations. This study demonstrates the superiority of transformer-based models over conventional CNN-based approaches for CBCT-to-CT translation, contributing to the advancement of image synthesis techniques in ART.