通过约束最小二乘法估算具有双等位基因变异的雅克遗传特征系数。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jan Graffelman, Bruce S Weir, Jérôme Goudet
{"title":"通过约束最小二乘法估算具有双等位基因变异的雅克遗传特征系数。","authors":"Jan Graffelman, Bruce S Weir, Jérôme Goudet","doi":"10.1038/s41437-024-00731-z","DOIUrl":null,"url":null,"abstract":"<p><p>The Jacquard genetic identity coefficients are of fundamental importance in relatedness research. We address the estimation of these coefficients as well as other relationship parameters that derive from them such as kinship and inbreeding coefficients using a concise matrix framework. Estimation of the Jacquard coefficients via likelihood methods and the expectation-maximization algorithm is computationally very demanding for large numbers of polymorphisms. We propose a constrained least squares approach to estimate the Jacquard coefficients. A simulation study shows constrained least squares achieves root-mean-squared errors that are comparable with those of the maximum likelihood approach, in particular when founder allele frequencies are unknown, while obtaining enormous computational savings.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares.\",\"authors\":\"Jan Graffelman, Bruce S Weir, Jérôme Goudet\",\"doi\":\"10.1038/s41437-024-00731-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Jacquard genetic identity coefficients are of fundamental importance in relatedness research. We address the estimation of these coefficients as well as other relationship parameters that derive from them such as kinship and inbreeding coefficients using a concise matrix framework. Estimation of the Jacquard coefficients via likelihood methods and the expectation-maximization algorithm is computationally very demanding for large numbers of polymorphisms. We propose a constrained least squares approach to estimate the Jacquard coefficients. A simulation study shows constrained least squares achieves root-mean-squared errors that are comparable with those of the maximum likelihood approach, in particular when founder allele frequencies are unknown, while obtaining enormous computational savings.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41437-024-00731-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41437-024-00731-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

雅克遗传同一性系数在亲缘关系研究中至关重要。我们采用简明矩阵框架来估算这些系数以及由这些系数衍生出的其他关系参数,如亲缘关系系数和近交系数。通过似然法和期望最大化算法估算雅克系数,对大量多态性的计算要求非常高。我们提出了一种约束最小二乘法来估计提花系数。模拟研究表明,约束最小二乘法的均方根误差与最大似然法不相上下,尤其是在创始人等位基因频率未知的情况下,同时还节省了大量的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares.

The Jacquard genetic identity coefficients are of fundamental importance in relatedness research. We address the estimation of these coefficients as well as other relationship parameters that derive from them such as kinship and inbreeding coefficients using a concise matrix framework. Estimation of the Jacquard coefficients via likelihood methods and the expectation-maximization algorithm is computationally very demanding for large numbers of polymorphisms. We propose a constrained least squares approach to estimate the Jacquard coefficients. A simulation study shows constrained least squares achieves root-mean-squared errors that are comparable with those of the maximum likelihood approach, in particular when founder allele frequencies are unknown, while obtaining enormous computational savings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信