Yinan Zhou, Ying Zhang, Dongchen Xu, Chenguang Yang, Xiao Lin, Kunlin Jin, Lei Xia, Qichuan Zhuge, Su Yang
{"title":"来自极化小胶质细胞的外泌体:通过蛋白质组学深入了解影响脑出血的潜在机制。","authors":"Yinan Zhou, Ying Zhang, Dongchen Xu, Chenguang Yang, Xiao Lin, Kunlin Jin, Lei Xia, Qichuan Zhuge, Su Yang","doi":"10.1016/j.gene.2024.149080","DOIUrl":null,"url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is a devastating form of stroke associated with significant morbidity and mortality. Microglia are intracranial innate immune cell that play critical roles in Intracerebral hemorrhage through direct or indirect means. Vesicle transport is a fundamental mechanism of intercellular communication. Recent studies have identified microglia in specific polarized states correlate with pathogenesis, material and signal transmission in ICH through derived extracellular vesicles. Diverse polarization states trigger distinct functions, however, the exosome proteomes across these states remain poorly characterized. Here, we hypothesized that microglia exosomal profiles vary with polarization states, impacting their functional repertoire and influencing outcomes in cerebral hemorrhage. In vitro model of cerebral hemorrhage, administration of 20 μg/ml LPS-induced M1 microglia derived exosomes (M1-Exo) with HT22 enhanced hemin-induced neuronal death, while IL-4-induced M2 microglia derived exosomes (M2-Exo) significantly reduced hemin-induced cell apoptosis and inflammation. Then we identified novel state-specific proteomic profiles of microglia-derived exosomes under these polarization conditions through label-free quantitative mass spectrometry (LFQ-MS). Analysis of protein content identified several exosomal signature proteins and hundreds of differentially expressed proteins across polarization states. Specifically, proteins including UMOD, NLRP3, ACOD1, IL1RN, heme oxygenase 1 (HMOX1), CCL4, and TNFRSF1B in M1-Exo were enriched in inflammatory pathways, while those in M2-Exo exhibited enrichment in autophagy, ubiquitination, and mitochondrial respiration. The analysis of those diverse exosomal proteins suggested unique proteomic profiles and possible intracellular signal transmission and regulation mechanisms. Together, these findings offer new insights and resources for studying microglia-derived exosome and pave the way for the development of novel therapeutic strategies targeting microglial exosome-mediated pathways.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes from polarized Microglia: Proteomic insights into potential mechanisms affecting intracerebral hemorrhage.\",\"authors\":\"Yinan Zhou, Ying Zhang, Dongchen Xu, Chenguang Yang, Xiao Lin, Kunlin Jin, Lei Xia, Qichuan Zhuge, Su Yang\",\"doi\":\"10.1016/j.gene.2024.149080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intracerebral hemorrhage (ICH) is a devastating form of stroke associated with significant morbidity and mortality. Microglia are intracranial innate immune cell that play critical roles in Intracerebral hemorrhage through direct or indirect means. Vesicle transport is a fundamental mechanism of intercellular communication. Recent studies have identified microglia in specific polarized states correlate with pathogenesis, material and signal transmission in ICH through derived extracellular vesicles. Diverse polarization states trigger distinct functions, however, the exosome proteomes across these states remain poorly characterized. Here, we hypothesized that microglia exosomal profiles vary with polarization states, impacting their functional repertoire and influencing outcomes in cerebral hemorrhage. In vitro model of cerebral hemorrhage, administration of 20 μg/ml LPS-induced M1 microglia derived exosomes (M1-Exo) with HT22 enhanced hemin-induced neuronal death, while IL-4-induced M2 microglia derived exosomes (M2-Exo) significantly reduced hemin-induced cell apoptosis and inflammation. Then we identified novel state-specific proteomic profiles of microglia-derived exosomes under these polarization conditions through label-free quantitative mass spectrometry (LFQ-MS). Analysis of protein content identified several exosomal signature proteins and hundreds of differentially expressed proteins across polarization states. Specifically, proteins including UMOD, NLRP3, ACOD1, IL1RN, heme oxygenase 1 (HMOX1), CCL4, and TNFRSF1B in M1-Exo were enriched in inflammatory pathways, while those in M2-Exo exhibited enrichment in autophagy, ubiquitination, and mitochondrial respiration. The analysis of those diverse exosomal proteins suggested unique proteomic profiles and possible intracellular signal transmission and regulation mechanisms. Together, these findings offer new insights and resources for studying microglia-derived exosome and pave the way for the development of novel therapeutic strategies targeting microglial exosome-mediated pathways.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gene.2024.149080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Exosomes from polarized Microglia: Proteomic insights into potential mechanisms affecting intracerebral hemorrhage.
Intracerebral hemorrhage (ICH) is a devastating form of stroke associated with significant morbidity and mortality. Microglia are intracranial innate immune cell that play critical roles in Intracerebral hemorrhage through direct or indirect means. Vesicle transport is a fundamental mechanism of intercellular communication. Recent studies have identified microglia in specific polarized states correlate with pathogenesis, material and signal transmission in ICH through derived extracellular vesicles. Diverse polarization states trigger distinct functions, however, the exosome proteomes across these states remain poorly characterized. Here, we hypothesized that microglia exosomal profiles vary with polarization states, impacting their functional repertoire and influencing outcomes in cerebral hemorrhage. In vitro model of cerebral hemorrhage, administration of 20 μg/ml LPS-induced M1 microglia derived exosomes (M1-Exo) with HT22 enhanced hemin-induced neuronal death, while IL-4-induced M2 microglia derived exosomes (M2-Exo) significantly reduced hemin-induced cell apoptosis and inflammation. Then we identified novel state-specific proteomic profiles of microglia-derived exosomes under these polarization conditions through label-free quantitative mass spectrometry (LFQ-MS). Analysis of protein content identified several exosomal signature proteins and hundreds of differentially expressed proteins across polarization states. Specifically, proteins including UMOD, NLRP3, ACOD1, IL1RN, heme oxygenase 1 (HMOX1), CCL4, and TNFRSF1B in M1-Exo were enriched in inflammatory pathways, while those in M2-Exo exhibited enrichment in autophagy, ubiquitination, and mitochondrial respiration. The analysis of those diverse exosomal proteins suggested unique proteomic profiles and possible intracellular signal transmission and regulation mechanisms. Together, these findings offer new insights and resources for studying microglia-derived exosome and pave the way for the development of novel therapeutic strategies targeting microglial exosome-mediated pathways.