利用电子病历识别非典型儿科糖尿病病例。

IF 3.7 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Marcela F Astudillo, William E Winter, Liana K Billings, Raymond Kreienkamp, Ashok Balasubramanyam, Maria J Redondo, Mustafa Tosur
{"title":"利用电子病历识别非典型儿科糖尿病病例。","authors":"Marcela F Astudillo, William E Winter, Liana K Billings, Raymond Kreienkamp, Ashok Balasubramanyam, Maria J Redondo, Mustafa Tosur","doi":"10.1136/bmjdrc-2024-004471","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>There are no established methods to identify children with atypical diabetes for further study. We aimed to develop strategies to systematically ascertain cases of atypical pediatric diabetes using electronic medical records (EMR).</p><p><strong>Research design and methods: </strong>We tested two strategies in a large pediatric hospital in the USA. Strategy 1: we designed a questionnaire to rule out typical diabetes and applied it to the EMR of 100 youth with diabetes. Strategy 2: we built three electronic queries to generate reports of three atypical pediatric diabetes phenotypes: unknown type, type 2 diabetes (T2D) diagnosed <10 years old and autoantibody-negative type 1 diabetes (AbNegT1D).</p><p><strong>Results: </strong>Strategy 1 identified six cases (6%) of atypical diabetes (mean diagnosis age=11±2.6 years, 16.6% men, 33% non-Hispanic white (NHW) and 66.6% Hispanic). Strategy 2: unknown diabetes type: n=68 (1%) out of 6676 patients with diabetes; mean diagnosis age=12.6±3.3 years, 32.8% men, 23.8% NHW, 47.6% Hispanic, 25.4% African American (AA), 3.2% other. T2D <10 years old: n=64 (6.6%) out of 1142 patients with T2D; mean diagnosis age=8.6±1.6 years, 20.3% men, 4.7% NHW, 65.6% Hispanic, 28.1% AA, 1.6% other. AbNegT1D: n=38 (5.6%) out of 680 patients with new onset T1D; mean diagnosis age=11.3±3.8 years; 57.9% men, 50% NHW, 19.4% Hispanic, 22.3% AA, 8.3% other.</p><p><strong>Conclusions: </strong>In sum, we identified 1%-6.6% of atypical diabetes cases in a pediatric diabetes population with high racial and ethnic diversity using systematic review of the EMR. Better identification of these cases using unbiased approaches may advance precision diabetes.</p>","PeriodicalId":9151,"journal":{"name":"BMJ Open Diabetes Research & Care","volume":"12 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551976/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of atypical pediatric diabetes mellitus cases using electronic medical records.\",\"authors\":\"Marcela F Astudillo, William E Winter, Liana K Billings, Raymond Kreienkamp, Ashok Balasubramanyam, Maria J Redondo, Mustafa Tosur\",\"doi\":\"10.1136/bmjdrc-2024-004471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>There are no established methods to identify children with atypical diabetes for further study. We aimed to develop strategies to systematically ascertain cases of atypical pediatric diabetes using electronic medical records (EMR).</p><p><strong>Research design and methods: </strong>We tested two strategies in a large pediatric hospital in the USA. Strategy 1: we designed a questionnaire to rule out typical diabetes and applied it to the EMR of 100 youth with diabetes. Strategy 2: we built three electronic queries to generate reports of three atypical pediatric diabetes phenotypes: unknown type, type 2 diabetes (T2D) diagnosed <10 years old and autoantibody-negative type 1 diabetes (AbNegT1D).</p><p><strong>Results: </strong>Strategy 1 identified six cases (6%) of atypical diabetes (mean diagnosis age=11±2.6 years, 16.6% men, 33% non-Hispanic white (NHW) and 66.6% Hispanic). Strategy 2: unknown diabetes type: n=68 (1%) out of 6676 patients with diabetes; mean diagnosis age=12.6±3.3 years, 32.8% men, 23.8% NHW, 47.6% Hispanic, 25.4% African American (AA), 3.2% other. T2D <10 years old: n=64 (6.6%) out of 1142 patients with T2D; mean diagnosis age=8.6±1.6 years, 20.3% men, 4.7% NHW, 65.6% Hispanic, 28.1% AA, 1.6% other. AbNegT1D: n=38 (5.6%) out of 680 patients with new onset T1D; mean diagnosis age=11.3±3.8 years; 57.9% men, 50% NHW, 19.4% Hispanic, 22.3% AA, 8.3% other.</p><p><strong>Conclusions: </strong>In sum, we identified 1%-6.6% of atypical diabetes cases in a pediatric diabetes population with high racial and ethnic diversity using systematic review of the EMR. Better identification of these cases using unbiased approaches may advance precision diabetes.</p>\",\"PeriodicalId\":9151,\"journal\":{\"name\":\"BMJ Open Diabetes Research & Care\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Open Diabetes Research & Care\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjdrc-2024-004471\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Diabetes Research & Care","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1136/bmjdrc-2024-004471","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

导言:目前尚无确定非典型糖尿病患儿的方法供进一步研究。我们旨在制定策略,利用电子病历(EMR)系统地确定非典型儿童糖尿病病例:我们在美国一家大型儿科医院测试了两种策略。策略 1:我们设计了一份排除典型糖尿病的调查问卷,并将其应用于 100 名青少年糖尿病患者的电子病历。策略 2:我们建立了三个电子查询,以生成三种非典型儿科糖尿病表型的报告:未知类型、2 型糖尿病 (T2D) 诊断结果:策略 1 发现了 6 例(6%)非典型糖尿病病例(平均诊断年龄=11±2.6 岁,16.6% 为男性,33% 为非西班牙裔白人(NHW),66.6% 为西班牙裔)。策略 2:未知糖尿病类型:在 6676 名糖尿病患者中,n=68(1%);平均诊断年龄=12.6±3.3 岁,男性占 32.8%,非西班牙裔白人(NHW)占 23.8%,西班牙裔占 47.6%,非裔美国人(AA)占 25.4%,其他占 3.2%。T2D结论:总之,我们通过对EMR进行系统性审查,在种族和民族多样性较高的儿童糖尿病人群中发现了1%-6.6%的非典型糖尿病病例。使用无偏见的方法更好地识别这些病例可能会促进精准糖尿病的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of atypical pediatric diabetes mellitus cases using electronic medical records.

Introduction: There are no established methods to identify children with atypical diabetes for further study. We aimed to develop strategies to systematically ascertain cases of atypical pediatric diabetes using electronic medical records (EMR).

Research design and methods: We tested two strategies in a large pediatric hospital in the USA. Strategy 1: we designed a questionnaire to rule out typical diabetes and applied it to the EMR of 100 youth with diabetes. Strategy 2: we built three electronic queries to generate reports of three atypical pediatric diabetes phenotypes: unknown type, type 2 diabetes (T2D) diagnosed <10 years old and autoantibody-negative type 1 diabetes (AbNegT1D).

Results: Strategy 1 identified six cases (6%) of atypical diabetes (mean diagnosis age=11±2.6 years, 16.6% men, 33% non-Hispanic white (NHW) and 66.6% Hispanic). Strategy 2: unknown diabetes type: n=68 (1%) out of 6676 patients with diabetes; mean diagnosis age=12.6±3.3 years, 32.8% men, 23.8% NHW, 47.6% Hispanic, 25.4% African American (AA), 3.2% other. T2D <10 years old: n=64 (6.6%) out of 1142 patients with T2D; mean diagnosis age=8.6±1.6 years, 20.3% men, 4.7% NHW, 65.6% Hispanic, 28.1% AA, 1.6% other. AbNegT1D: n=38 (5.6%) out of 680 patients with new onset T1D; mean diagnosis age=11.3±3.8 years; 57.9% men, 50% NHW, 19.4% Hispanic, 22.3% AA, 8.3% other.

Conclusions: In sum, we identified 1%-6.6% of atypical diabetes cases in a pediatric diabetes population with high racial and ethnic diversity using systematic review of the EMR. Better identification of these cases using unbiased approaches may advance precision diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMJ Open Diabetes Research & Care
BMJ Open Diabetes Research & Care Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
9.30
自引率
2.40%
发文量
123
审稿时长
18 weeks
期刊介绍: BMJ Open Diabetes Research & Care is an open access journal committed to publishing high-quality, basic and clinical research articles regarding type 1 and type 2 diabetes, and associated complications. Only original content will be accepted, and submissions are subject to rigorous peer review to ensure the publication of high-quality — and evidence-based — original research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信