利用动态优化的电刺激精确控制神经活动。

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2024-11-07 DOI:10.7554/eLife.83424
Nishal Pradeepbhai Shah, A J Phillips, Sasidhar Madugula, Amrith Lotlikar, Alex R Gogliettino, Madeline Rose Hays, Lauren Grosberg, Jeff Brown, Aditya Dusi, Pulkit Tandon, Pawel Hottowy, Wladyslaw Dabrowski, Alexander Sher, Alan M Litke, Subhasish Mitra, E J Chichilnisky
{"title":"利用动态优化的电刺激精确控制神经活动。","authors":"Nishal Pradeepbhai Shah, A J Phillips, Sasidhar Madugula, Amrith Lotlikar, Alex R Gogliettino, Madeline Rose Hays, Lauren Grosberg, Jeff Brown, Aditya Dusi, Pulkit Tandon, Pawel Hottowy, Wladyslaw Dabrowski, Alexander Sher, Alan M Litke, Subhasish Mitra, E J Chichilnisky","doi":"10.7554/eLife.83424","DOIUrl":null,"url":null,"abstract":"<p><p>Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precise control of neural activity using dynamically optimized electrical stimulation.\",\"authors\":\"Nishal Pradeepbhai Shah, A J Phillips, Sasidhar Madugula, Amrith Lotlikar, Alex R Gogliettino, Madeline Rose Hays, Lauren Grosberg, Jeff Brown, Aditya Dusi, Pulkit Tandon, Pawel Hottowy, Wladyslaw Dabrowski, Alexander Sher, Alan M Litke, Subhasish Mitra, E J Chichilnisky\",\"doi\":\"10.7554/eLife.83424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.83424\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.7554/eLife.83424","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经植入物可以通过电唤起神经群复杂的自然活动模式来恢复丧失的感官功能。然而,由于反应的非线性,很难预测和控制诱发神经对同时多电极刺激的反应。我们提出了这一问题的解决方案,并在用于恢复视力的双向视网膜植入中展示了其实用性。动态优化刺激方法将传入的视觉刺激编码为快速、贪婪选择、时间抖动和空间多路复用的简单刺激模式序列。选择刺激是为了优化从诱发反应中重建视觉刺激。时间抖动利用了下游神经处理的缓慢时间尺度,空间复用利用了远距离电极产生的反应的独立性。该方法利用视网膜植入的实验室实验原型进行了评估:对猕猴和大鼠视网膜神经节细胞进行大规模、高分辨率的多电极刺激和体外记录。与基于视觉刺激强度和电流振幅之间静态映射的现有方法相比,动态优化的刺激方法大大提高了性能。模块化框架可并行扩展到自然观察条件、感知相似性测量和植入式设备的高效实施。对该方法进行的直接闭环测试支持其在视力恢复中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise control of neural activity using dynamically optimized electrical stimulation.

Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信