基于图域适应的大规模空间解析转录组学基因表达增强和细胞类型识别框架

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Rongbo Shen, Meiling Cheng, Wencang Wang, Qi Fan, Huan Yan, Jiayue Wen, Zhiyuan Yuan, Jianhua Yao, Yixue Li, Jiao Yuan
{"title":"基于图域适应的大规模空间解析转录组学基因表达增强和细胞类型识别框架","authors":"Rongbo Shen, Meiling Cheng, Wencang Wang, Qi Fan, Huan Yan, Jiayue Wen, Zhiyuan Yuan, Jianhua Yao, Yixue Li, Jiao Yuan","doi":"10.1093/bib/bbae576","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541786/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graph domain adaptation-based framework for gene expression enhancement and cell type identification in large-scale spatially resolved transcriptomics.\",\"authors\":\"Rongbo Shen, Meiling Cheng, Wencang Wang, Qi Fan, Huan Yan, Jiayue Wen, Zhiyuan Yuan, Jianhua Yao, Yixue Li, Jiao Yuan\",\"doi\":\"10.1093/bib/bbae576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae576\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae576","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

空间分辨转录组学(SRT)技术有助于在初始状态下进行空间分辨的基因表达谱分析。然而,目前的 SRT 技术有其局限性,表现为转录本检测灵敏度低或基因通量受限。这些限制导致基因测量的精度和覆盖率降低。为此,我们引入了 SpaGDA,这是一种基于深度学习的复杂图域适应框架,通过公正地转移来自参考 scRNA-seq 数据的知识,适用于空间解析转录组学数据中的基因表达归约和细胞类型鉴定这两种情况。对不同技术生成的多个 SRT 数据集进行的系统基准分析表明,在这两种情况下,与最先进的方法相比,SpaGDA 具有更高的有效性。进一步应用于三个不同生物背景的 SRT 数据集,SpaGDA 不仅能更好地恢复来自公共图谱和现有科学文献的既定知识,还能产生信息量更大的基因空间表达模式。这些结果共同表明,SpaGDA 可用于克服当前 SRT 数据所面临的挑战,并为生物过程或疾病发展提供更准确的见解。SpaGDA 可在 https://github.com/shenrb/SpaGDA 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph domain adaptation-based framework for gene expression enhancement and cell type identification in large-scale spatially resolved transcriptomics.

Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信