细胞计量遮蔽自动编码器:准确、可解释的自动免疫分型器

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Jaesik Kim, Matei Ionita, Matthew Lee, Michelle L McKeague, Ajinkya Pattekar, Mark M Painter, Joost Wagenaar, Van Truong, Dylan T Norton, Divij Mathew, Yonghyun Nam, Sokratis A Apostolidis, Cynthia Clendenin, Patryk Orzechowski, Sang-Hyuk Jung, Jakob Woerner, Caroline A G Ittner, Alexandra P Turner, Mika Esperanza, Thomas G Dunn, Nilam S Mangalmurti, John P Reilly, Nuala J Meyer, Carolyn S Calfee, Kathleen D Liu, Michael A Matthy, Lamorna Brown Swigart, Ellen L Burnham, Jeffrey McKeehan, Sheetal Gandotra, Derek W Russel, Kevin W Gibbs, Karl W Thomas, Harsh Barot, Allison R Greenplate, E John Wherry, Dokyoon Kim
{"title":"细胞计量遮蔽自动编码器:准确、可解释的自动免疫分型器","authors":"Jaesik Kim, Matei Ionita, Matthew Lee, Michelle L McKeague, Ajinkya Pattekar, Mark M Painter, Joost Wagenaar, Van Truong, Dylan T Norton, Divij Mathew, Yonghyun Nam, Sokratis A Apostolidis, Cynthia Clendenin, Patryk Orzechowski, Sang-Hyuk Jung, Jakob Woerner, Caroline A G Ittner, Alexandra P Turner, Mika Esperanza, Thomas G Dunn, Nilam S Mangalmurti, John P Reilly, Nuala J Meyer, Carolyn S Calfee, Kathleen D Liu, Michael A Matthy, Lamorna Brown Swigart, Ellen L Burnham, Jeffrey McKeehan, Sheetal Gandotra, Derek W Russel, Kevin W Gibbs, Karl W Thomas, Harsh Barot, Allison R Greenplate, E John Wherry, Dokyoon Kim","doi":"10.1016/j.xcrm.2024.101808","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytometry masked autoencoder: An accurate and interpretable automated immunophenotyper.\",\"authors\":\"Jaesik Kim, Matei Ionita, Matthew Lee, Michelle L McKeague, Ajinkya Pattekar, Mark M Painter, Joost Wagenaar, Van Truong, Dylan T Norton, Divij Mathew, Yonghyun Nam, Sokratis A Apostolidis, Cynthia Clendenin, Patryk Orzechowski, Sang-Hyuk Jung, Jakob Woerner, Caroline A G Ittner, Alexandra P Turner, Mika Esperanza, Thomas G Dunn, Nilam S Mangalmurti, John P Reilly, Nuala J Meyer, Carolyn S Calfee, Kathleen D Liu, Michael A Matthy, Lamorna Brown Swigart, Ellen L Burnham, Jeffrey McKeehan, Sheetal Gandotra, Derek W Russel, Kevin W Gibbs, Karl W Thomas, Harsh Barot, Allison R Greenplate, E John Wherry, Dokyoon Kim\",\"doi\":\"10.1016/j.xcrm.2024.101808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2024.101808\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101808","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞细胞测量数据对于了解免疫系统在疾病中的作用和对治疗的反应至关重要。然而,注释细胞测量数据的传统方法在可扩展性、稳健性和准确性方面面临挑战。我们提出了一种细胞测量掩码自动编码器(cyMAE),它能自动完成包括细胞类型注释在内的免疫分型任务。该模型支持用户定义的细胞类型定义,便于解释和跨研究比较。cyMAE 的训练有一个自我监督阶段,利用大量未标注的数据,然后使用较少量的标注数据对专门任务进行微调。在使用相同面板对新数据集进行重复推断时,训练新模型的成本会被摊销。通过在使用相同面板的多项研究中进行验证,我们证明 cyMAE 能提供准确、可解释的细胞免疫分型,并能改进受试者级别元数据的预测。这一概念验证标志着大规模免疫学研究向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cytometry masked autoencoder: An accurate and interpretable automated immunophenotyper.

Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信