支持 Co/Co2P 纳米粒子的 N、P-掺杂碳纳米片的异界面工程,用于促进可充电锌-空气电池的氧还原和氧进化反应。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Wenhao Xi , Tongchen Wu , Pan Wang , Wenlong Huang , Bifen Gao , Liwen He , Yilin Chen , Bizhou Lin
{"title":"支持 Co/Co2P 纳米粒子的 N、P-掺杂碳纳米片的异界面工程,用于促进可充电锌-空气电池的氧还原和氧进化反应。","authors":"Wenhao Xi ,&nbsp;Tongchen Wu ,&nbsp;Pan Wang ,&nbsp;Wenlong Huang ,&nbsp;Bifen Gao ,&nbsp;Liwen He ,&nbsp;Yilin Chen ,&nbsp;Bizhou Lin","doi":"10.1016/j.jcis.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal phosphides (TMPs) with high electrocatalytic activity for the oxygen evolution reaction (OER) are reckoned as a substitution of precious group metals catalysts in rechargeable Zn-air battery. In this work, Co/Co<sub>2</sub>P heterojunction nanoparticles supported N,P-doped carbon nanosheets (Co/Co<sub>2</sub>P@NPCNS) were designed and prepared via a facile one-step molten salt-assisted pyrolysis process. Density function theory calculations reveal that the heterogeneous interactions of Co/Co<sub>2</sub>P effectively enhance the bifunctional electrocatalytic activity for oxygen reduction reaction (ORR) and OER. The synergistic interaction between the Co/Co<sub>2</sub>P heterojunction nanoparticles with highly exposed active sites and excellent catalytic activity and the two-dimensional doped carbon nanosheets with high conductivity contributes to Co/Co<sub>2</sub>P@NPCNS exhibiting preeminent bifunctional ORR/OER activity and stability with a high half-wave potential for ORR (0.87 V), a low overpotential for OER (302 mV at 10 mA cm<sup>−2</sup>) and a low potential gap (0.66 V). The homemade rechargeable Zn-air battery performs high peak power density (187 mW cm<sup>−2</sup>) and exceptional endurance. This heterogeneous interface tactic of integrating TMPs with heteroatom-doped carbon materials may shed light on the research and development of non-precious metal electrocatalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 355-363"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterointerfacial engineering of N,P-doped carbon nanosheets supported Co/Co2P nanoparticles for boosting oxygen reduction and oxygen evolution reactions towards rechargeable Zn-air battery\",\"authors\":\"Wenhao Xi ,&nbsp;Tongchen Wu ,&nbsp;Pan Wang ,&nbsp;Wenlong Huang ,&nbsp;Bifen Gao ,&nbsp;Liwen He ,&nbsp;Yilin Chen ,&nbsp;Bizhou Lin\",\"doi\":\"10.1016/j.jcis.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal phosphides (TMPs) with high electrocatalytic activity for the oxygen evolution reaction (OER) are reckoned as a substitution of precious group metals catalysts in rechargeable Zn-air battery. In this work, Co/Co<sub>2</sub>P heterojunction nanoparticles supported N,P-doped carbon nanosheets (Co/Co<sub>2</sub>P@NPCNS) were designed and prepared via a facile one-step molten salt-assisted pyrolysis process. Density function theory calculations reveal that the heterogeneous interactions of Co/Co<sub>2</sub>P effectively enhance the bifunctional electrocatalytic activity for oxygen reduction reaction (ORR) and OER. The synergistic interaction between the Co/Co<sub>2</sub>P heterojunction nanoparticles with highly exposed active sites and excellent catalytic activity and the two-dimensional doped carbon nanosheets with high conductivity contributes to Co/Co<sub>2</sub>P@NPCNS exhibiting preeminent bifunctional ORR/OER activity and stability with a high half-wave potential for ORR (0.87 V), a low overpotential for OER (302 mV at 10 mA cm<sup>−2</sup>) and a low potential gap (0.66 V). The homemade rechargeable Zn-air battery performs high peak power density (187 mW cm<sup>−2</sup>) and exceptional endurance. This heterogeneous interface tactic of integrating TMPs with heteroatom-doped carbon materials may shed light on the research and development of non-precious metal electrocatalysts.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"680 \",\"pages\":\"Pages 355-363\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724025694\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025694","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在氧进化反应(OER)中具有高电催化活性的过渡金属磷化物(TMPs)被认为是可充电锌-空气电池中贵族金属催化剂的替代品。在这项工作中,通过一步熔盐辅助热解工艺,设计并制备了支持 N、P 掺杂碳纳米片的 Co/Co2P 异质结纳米粒子(Co/Co2P@NPCNS)。密度函数理论计算表明,Co/Co2P 的异质相互作用有效地提高了氧还原反应(ORR)和 OER 的双功能电催化活性。具有高暴露活性位点和优异催化活性的 Co/Co2P 异质结纳米粒子与具有高导电性的二维掺杂碳纳米片之间的协同作用,使得 Co/Co2P@NPCNS 具有卓越的 ORR/OER 双功能活性和稳定性,ORR 半波电位高(0.87 V),OER 过电位低(10 mA cm-2 时为 302 mV),电位差低(0.66 V)。自制的可充电锌空气电池具有峰值功率密度高(187 mW cm-2)和超强的续航能力。这种将 TMPs 与掺杂杂原子的碳材料结合在一起的异质界面战术可能会为非贵金属电催化剂的研究和开发带来启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterointerfacial engineering of N,P-doped carbon nanosheets supported Co/Co2P nanoparticles for boosting oxygen reduction and oxygen evolution reactions towards rechargeable Zn-air battery

Heterointerfacial engineering of N,P-doped carbon nanosheets supported Co/Co2P nanoparticles for boosting oxygen reduction and oxygen evolution reactions towards rechargeable Zn-air battery
Transition metal phosphides (TMPs) with high electrocatalytic activity for the oxygen evolution reaction (OER) are reckoned as a substitution of precious group metals catalysts in rechargeable Zn-air battery. In this work, Co/Co2P heterojunction nanoparticles supported N,P-doped carbon nanosheets (Co/Co2P@NPCNS) were designed and prepared via a facile one-step molten salt-assisted pyrolysis process. Density function theory calculations reveal that the heterogeneous interactions of Co/Co2P effectively enhance the bifunctional electrocatalytic activity for oxygen reduction reaction (ORR) and OER. The synergistic interaction between the Co/Co2P heterojunction nanoparticles with highly exposed active sites and excellent catalytic activity and the two-dimensional doped carbon nanosheets with high conductivity contributes to Co/Co2P@NPCNS exhibiting preeminent bifunctional ORR/OER activity and stability with a high half-wave potential for ORR (0.87 V), a low overpotential for OER (302 mV at 10 mA cm−2) and a low potential gap (0.66 V). The homemade rechargeable Zn-air battery performs high peak power density (187 mW cm−2) and exceptional endurance. This heterogeneous interface tactic of integrating TMPs with heteroatom-doped carbon materials may shed light on the research and development of non-precious metal electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信