多频-STD NMR揭示了gnavus小反刍球菌分子内反式硅烷酶的首个迈克尔斯复合物。

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Serena Monaco, Louise E Tailford, Andrew Bell, Matthew Wallace, Nathalie Juge, Jesús Angulo
{"title":"多频-STD NMR揭示了gnavus小反刍球菌分子内反式硅烷酶的首个迈克尔斯复合物。","authors":"Serena Monaco, Louise E Tailford, Andrew Bell, Matthew Wallace, Nathalie Juge, Jesús Angulo","doi":"10.1016/j.bioorg.2024.107906","DOIUrl":null,"url":null,"abstract":"<p><p>RgNanH is an intramolecular trans-sialidase expressed by the human gut symbiont Ruminococcus gnavus, to utilise intestinal sialylated mucin glycan epitopes. Its catalytic domain, belonging to glycoside hydrolase GH33 family, cleaves off terminal sialic acid residues from mucins, releasing 2,7-anhydro-Neu5Ac which is then used as metabolic substrate by R. gnavus to proliferate in the mucosal environment. RgNanH is one of the three intramolecular trans-sialidases (IT-sialidases) characterised to date, and the first from a gut commensal organism. Here, saturation transfer difference NMR (STD NMR) in combination with computational techniques (molecular docking and CORCEMA-ST) were used to elucidate the specificity, kinetics and relative affinity of RgNanH for sialoglycans and 2,7-anhydro-Neu5Ac. We propose the first 3D model for the Michaelis complex of an IT-sialidase. This confirms the sialic acid to be the main recognition element for the interaction in the enzymatic cleft and highlights the crucial role of Trp698 to make CH-π stacking with the galactose residue of the substrate 3'-sialyllactose. The same contact is shown not to be possible for 6'-sialyllactose, due to geometrical constrains of the α-2,6 linkage. Indeed 6'-sialyllactose is not a substrate, even though it is shown to bind to RgNanH by STD NMR. These findings corroborate the role of Trp698 for the α-2,3 specificity of IT-sialidases. In this structural study, the use of Differential Epitope Mapping STD NMR (DEEP-STD NMR) approach allowed the validation of the proposed 3D models in solution. These structural approaches are shown to be instrumental in shedding light on the molecular mechanisms underpinning enzymatic reactions in the absence of enzyme-substrate X-ray structures.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107906"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifrequency-STD NMR unveils the first Michaelis complex of an intramolecular trans-sialidase from Ruminococcus gnavus.\",\"authors\":\"Serena Monaco, Louise E Tailford, Andrew Bell, Matthew Wallace, Nathalie Juge, Jesús Angulo\",\"doi\":\"10.1016/j.bioorg.2024.107906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RgNanH is an intramolecular trans-sialidase expressed by the human gut symbiont Ruminococcus gnavus, to utilise intestinal sialylated mucin glycan epitopes. Its catalytic domain, belonging to glycoside hydrolase GH33 family, cleaves off terminal sialic acid residues from mucins, releasing 2,7-anhydro-Neu5Ac which is then used as metabolic substrate by R. gnavus to proliferate in the mucosal environment. RgNanH is one of the three intramolecular trans-sialidases (IT-sialidases) characterised to date, and the first from a gut commensal organism. Here, saturation transfer difference NMR (STD NMR) in combination with computational techniques (molecular docking and CORCEMA-ST) were used to elucidate the specificity, kinetics and relative affinity of RgNanH for sialoglycans and 2,7-anhydro-Neu5Ac. We propose the first 3D model for the Michaelis complex of an IT-sialidase. This confirms the sialic acid to be the main recognition element for the interaction in the enzymatic cleft and highlights the crucial role of Trp698 to make CH-π stacking with the galactose residue of the substrate 3'-sialyllactose. The same contact is shown not to be possible for 6'-sialyllactose, due to geometrical constrains of the α-2,6 linkage. Indeed 6'-sialyllactose is not a substrate, even though it is shown to bind to RgNanH by STD NMR. These findings corroborate the role of Trp698 for the α-2,3 specificity of IT-sialidases. In this structural study, the use of Differential Epitope Mapping STD NMR (DEEP-STD NMR) approach allowed the validation of the proposed 3D models in solution. These structural approaches are shown to be instrumental in shedding light on the molecular mechanisms underpinning enzymatic reactions in the absence of enzyme-substrate X-ray structures.</p>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"153 \",\"pages\":\"107906\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bioorg.2024.107906\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107906","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RgNanH 是一种由人类肠道共生体小反刍球菌(Ruminococcus gnavus)表达的分子内反式硅烷基化酶,用于利用肠道硅烷基化粘蛋白聚糖表位。它的催化结构域属于糖苷水解酶 GH33 家族,能从粘蛋白上裂解末端的硅酸残基,释放出 2,7-脱水-Neu5Ac,然后被 R. gnavus 用作代谢底物,在粘膜环境中增殖。RgNanH 是迄今为止发现的三种分子内反硅烷化酶(IT-sialidases)之一,也是第一种来自肠道共生生物的反硅烷化酶。在这里,我们将饱和转移差分核磁共振(STD NMR)与计算技术(分子对接和 CORCEMA-ST)相结合,阐明了 RgNanH 的特异性、动力学以及对硅藻糖和 2,7-anhydro-Neu5Ac 的相对亲和力。我们首次提出了 IT-硅糖苷酶迈克尔复合物的三维模型。这证实了硅铝酸是酶裂隙中相互作用的主要识别元素,并突出了 Trp698 在与底物 3'-sialyllactose 的半乳糖残基进行 CH-π 堆叠方面的关键作用。由于α-2,6 连接的几何限制,6'-半乳糖不可能发生同样的接触。事实上,尽管 STD NMR 显示 6'-sialyllactose 与 RgNanH 结合,但它并不是底物。这些发现证实了 Trp698 在 IT-sialidases 的 α-2,3 特异性中的作用。在这项结构研究中,使用差异表位映射 STD NMR(DEEP-STD NMR)方法验证了所提出的溶液三维模型。在没有酶-底物 X 射线结构的情况下,这些结构方法有助于揭示酶反应的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifrequency-STD NMR unveils the first Michaelis complex of an intramolecular trans-sialidase from Ruminococcus gnavus.

RgNanH is an intramolecular trans-sialidase expressed by the human gut symbiont Ruminococcus gnavus, to utilise intestinal sialylated mucin glycan epitopes. Its catalytic domain, belonging to glycoside hydrolase GH33 family, cleaves off terminal sialic acid residues from mucins, releasing 2,7-anhydro-Neu5Ac which is then used as metabolic substrate by R. gnavus to proliferate in the mucosal environment. RgNanH is one of the three intramolecular trans-sialidases (IT-sialidases) characterised to date, and the first from a gut commensal organism. Here, saturation transfer difference NMR (STD NMR) in combination with computational techniques (molecular docking and CORCEMA-ST) were used to elucidate the specificity, kinetics and relative affinity of RgNanH for sialoglycans and 2,7-anhydro-Neu5Ac. We propose the first 3D model for the Michaelis complex of an IT-sialidase. This confirms the sialic acid to be the main recognition element for the interaction in the enzymatic cleft and highlights the crucial role of Trp698 to make CH-π stacking with the galactose residue of the substrate 3'-sialyllactose. The same contact is shown not to be possible for 6'-sialyllactose, due to geometrical constrains of the α-2,6 linkage. Indeed 6'-sialyllactose is not a substrate, even though it is shown to bind to RgNanH by STD NMR. These findings corroborate the role of Trp698 for the α-2,3 specificity of IT-sialidases. In this structural study, the use of Differential Epitope Mapping STD NMR (DEEP-STD NMR) approach allowed the validation of the proposed 3D models in solution. These structural approaches are shown to be instrumental in shedding light on the molecular mechanisms underpinning enzymatic reactions in the absence of enzyme-substrate X-ray structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信