{"title":"含芳基氧基的蒽酸衍生物的设计、合成和 FXR 部分激动活性,作为代谢功能障碍相关性脂肪性肝炎的治疗药物。","authors":"Cong Chen, Xianghui Zhou, Wa Cheng, Xin Li, Bing Zhang, Jiaojiao Tu, Jieyun Meng, Yanfen Peng, Xiaoqun Duan, Qiming Yu, Xiangduan Tan","doi":"10.1016/j.bioorg.2024.107940","DOIUrl":null,"url":null,"abstract":"<p><p>Farnesoid X receptor (FXR) is considered a promising therapeutic target for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). Increasing evidence suggests that targeting FXR with full agonists may lead to side effects. FXR partial agonists, which moderately activate FXR signaling, are emerging as a feasible approach to mitigate side effects and address MASH. Herein, a series of novel anthranilic acid derivatives bearing aryloxy moiety were designed and synthesized using a hybrid strategy from the previously identified FXR partial agonists DM175 and AIV-25. Particularly, compound 26 exhibited potent FXR partial agonistic activity in a dual-luciferase reporter gene assay with an EC<sub>50</sub> value of 0.09 ± 0.02 µM (75.13 % maximum efficacy relative to OCA). In the MASH mice model, compound 26 significantly ameliorated the pathological features of the liver, including steatosis, inflammation, and fibrosis. In addition, compound 26 displayed high selectivity, good oral bioavailability, high liver distribution, as well as an acceptable safety profile. Molecular simulation studies showed that compound 26 fitted well with the binding site of FXR. Collectively, these findings demonstrated that compound 26 might serve as a promising candidate targeting FXR for MASH treatment.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107940"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis and FXR partial agonistic activity of anthranilic acid derivatives bearing aryloxy moiety as therapeutic agents for metabolic dysfunction-associated steatohepatitis.\",\"authors\":\"Cong Chen, Xianghui Zhou, Wa Cheng, Xin Li, Bing Zhang, Jiaojiao Tu, Jieyun Meng, Yanfen Peng, Xiaoqun Duan, Qiming Yu, Xiangduan Tan\",\"doi\":\"10.1016/j.bioorg.2024.107940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Farnesoid X receptor (FXR) is considered a promising therapeutic target for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). Increasing evidence suggests that targeting FXR with full agonists may lead to side effects. FXR partial agonists, which moderately activate FXR signaling, are emerging as a feasible approach to mitigate side effects and address MASH. Herein, a series of novel anthranilic acid derivatives bearing aryloxy moiety were designed and synthesized using a hybrid strategy from the previously identified FXR partial agonists DM175 and AIV-25. Particularly, compound 26 exhibited potent FXR partial agonistic activity in a dual-luciferase reporter gene assay with an EC<sub>50</sub> value of 0.09 ± 0.02 µM (75.13 % maximum efficacy relative to OCA). In the MASH mice model, compound 26 significantly ameliorated the pathological features of the liver, including steatosis, inflammation, and fibrosis. In addition, compound 26 displayed high selectivity, good oral bioavailability, high liver distribution, as well as an acceptable safety profile. Molecular simulation studies showed that compound 26 fitted well with the binding site of FXR. Collectively, these findings demonstrated that compound 26 might serve as a promising candidate targeting FXR for MASH treatment.</p>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"153 \",\"pages\":\"107940\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bioorg.2024.107940\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107940","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design, synthesis and FXR partial agonistic activity of anthranilic acid derivatives bearing aryloxy moiety as therapeutic agents for metabolic dysfunction-associated steatohepatitis.
Farnesoid X receptor (FXR) is considered a promising therapeutic target for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). Increasing evidence suggests that targeting FXR with full agonists may lead to side effects. FXR partial agonists, which moderately activate FXR signaling, are emerging as a feasible approach to mitigate side effects and address MASH. Herein, a series of novel anthranilic acid derivatives bearing aryloxy moiety were designed and synthesized using a hybrid strategy from the previously identified FXR partial agonists DM175 and AIV-25. Particularly, compound 26 exhibited potent FXR partial agonistic activity in a dual-luciferase reporter gene assay with an EC50 value of 0.09 ± 0.02 µM (75.13 % maximum efficacy relative to OCA). In the MASH mice model, compound 26 significantly ameliorated the pathological features of the liver, including steatosis, inflammation, and fibrosis. In addition, compound 26 displayed high selectivity, good oral bioavailability, high liver distribution, as well as an acceptable safety profile. Molecular simulation studies showed that compound 26 fitted well with the binding site of FXR. Collectively, these findings demonstrated that compound 26 might serve as a promising candidate targeting FXR for MASH treatment.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.