右美托咪定通过中枢α2A-肾上腺素受体减轻脓毒症相关脑病小鼠神经炎症介导的海马神经发生障碍

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Neuroscience Pub Date : 2024-11-20 Epub Date: 2024-11-08 DOI:10.1021/acschemneuro.4c00486
Xinlong Zhang, Yue Feng, Yi Zhong, Rui Ding, Yaoyi Guo, Fan Jiang, Yan Xing, Hongwei Shi, Hongguang Bao, Yanna Si
{"title":"右美托咪定通过中枢α2A-肾上腺素受体减轻脓毒症相关脑病小鼠神经炎症介导的海马神经发生障碍","authors":"Xinlong Zhang, Yue Feng, Yi Zhong, Rui Ding, Yaoyi Guo, Fan Jiang, Yan Xing, Hongwei Shi, Hongguang Bao, Yanna Si","doi":"10.1021/acschemneuro.4c00486","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE), one of the common complications of sepsis, is associated with higher ICU mortality, prolonged hospitalization, and long-term cognitive decline. Sepsis can induce neuroinflammation, which negatively affects hippocampal neurogenesis. Dexmedetomidine has been shown to protect against SAE. However, the potential mechanism remains unclear. In this study, we added lipopolysaccharide (LPS)-stimulated astrocytes-conditioned media (LPS-CM) to neural stem cells (NSCs) culture, which were pretreated with dexmedetomidine in the presence or absence of the α2-adrenoceptor antagonist yohimbine or the α2A-adrenoceptor antagonist BRL-44408. LPS-CM impaired the neurogenesis of NSCs, characterized by decreased proliferation, enhanced gliogenesis, and declined viability. Dexmedetomidine alleviated LPS-CM-induced impairment of neurogenesis in a dose-dependent manner. Yohimbine, as well as BRL-44408, reversed the effects of dexmedetomidine. We established a mouse model of SAE via cecal ligation and perforation (CLP). CLP-induced astrocyte-related neuroinflammation and hippocampal neurogenesis deficits, accompanied by learning and memory decline, which were reversed by dexmedetomidine. The effect of dexmedetomidine was blocked by BRL-44408. Collectively, our findings support the conclusion that dexmedetomidine can protect against SAE, likely mediated by the combination of inhibiting neuroinflammation via the astrocytic α2A-adrenoceptor with attenuating neuroinflammation-induced hippocampal neurogenesis deficits via NSCs α2A-adrenoceptor.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4185-4201"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine Attenuates Neuroinflammation-Mediated Hippocampal Neurogenesis Impairment in Sepsis-Associated Encephalopathy Mice through Central α2A-Adrenoceptor.\",\"authors\":\"Xinlong Zhang, Yue Feng, Yi Zhong, Rui Ding, Yaoyi Guo, Fan Jiang, Yan Xing, Hongwei Shi, Hongguang Bao, Yanna Si\",\"doi\":\"10.1021/acschemneuro.4c00486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis-associated encephalopathy (SAE), one of the common complications of sepsis, is associated with higher ICU mortality, prolonged hospitalization, and long-term cognitive decline. Sepsis can induce neuroinflammation, which negatively affects hippocampal neurogenesis. Dexmedetomidine has been shown to protect against SAE. However, the potential mechanism remains unclear. In this study, we added lipopolysaccharide (LPS)-stimulated astrocytes-conditioned media (LPS-CM) to neural stem cells (NSCs) culture, which were pretreated with dexmedetomidine in the presence or absence of the α2-adrenoceptor antagonist yohimbine or the α2A-adrenoceptor antagonist BRL-44408. LPS-CM impaired the neurogenesis of NSCs, characterized by decreased proliferation, enhanced gliogenesis, and declined viability. Dexmedetomidine alleviated LPS-CM-induced impairment of neurogenesis in a dose-dependent manner. Yohimbine, as well as BRL-44408, reversed the effects of dexmedetomidine. We established a mouse model of SAE via cecal ligation and perforation (CLP). CLP-induced astrocyte-related neuroinflammation and hippocampal neurogenesis deficits, accompanied by learning and memory decline, which were reversed by dexmedetomidine. The effect of dexmedetomidine was blocked by BRL-44408. Collectively, our findings support the conclusion that dexmedetomidine can protect against SAE, likely mediated by the combination of inhibiting neuroinflammation via the astrocytic α2A-adrenoceptor with attenuating neuroinflammation-induced hippocampal neurogenesis deficits via NSCs α2A-adrenoceptor.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"4185-4201\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00486\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00486","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

败血症相关脑病(SAE)是败血症的常见并发症之一,与较高的重症监护病房死亡率、住院时间延长和长期认知能力下降有关。脓毒症可诱发神经炎症,从而对海马神经发生产生负面影响。右美托咪定已被证明可防止 SAE。然而,其潜在机制仍不清楚。在本研究中,我们在神经干细胞(NSCs)培养中加入了脂多糖(LPS)刺激的星形胶质细胞条件培养基(LPS-CM),并在有或没有α2-肾上腺素受体拮抗剂育亨宾或α2A-肾上腺素受体拮抗剂BRL-44408的情况下对NSCs进行右美托咪定预处理。LPS-CM损害了NSCs的神经发生,表现为增殖减少、胶质细胞生成增强和活力下降。右美托咪定以剂量依赖的方式减轻了 LPS-CM 诱导的神经发生损伤。育亨宾和 BRL-44408 逆转了右美托咪定的作用。我们通过盲肠结扎和穿孔(CLP)建立了小鼠 SAE 模型。CLP诱发星形胶质细胞相关神经炎症和海马神经发生缺陷,并伴有学习和记忆力下降,右美托咪定可逆转这些症状。右美托咪定的作用被 BRL-44408 阻断。总之,我们的研究结果支持了右美托咪定可预防SAE的结论,这可能是通过星形胶质细胞α2A肾上腺素受体抑制神经炎症,并通过NSCsα2A肾上腺素受体减轻神经炎症诱导的海马神经元生成缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dexmedetomidine Attenuates Neuroinflammation-Mediated Hippocampal Neurogenesis Impairment in Sepsis-Associated Encephalopathy Mice through Central α2A-Adrenoceptor.

Sepsis-associated encephalopathy (SAE), one of the common complications of sepsis, is associated with higher ICU mortality, prolonged hospitalization, and long-term cognitive decline. Sepsis can induce neuroinflammation, which negatively affects hippocampal neurogenesis. Dexmedetomidine has been shown to protect against SAE. However, the potential mechanism remains unclear. In this study, we added lipopolysaccharide (LPS)-stimulated astrocytes-conditioned media (LPS-CM) to neural stem cells (NSCs) culture, which were pretreated with dexmedetomidine in the presence or absence of the α2-adrenoceptor antagonist yohimbine or the α2A-adrenoceptor antagonist BRL-44408. LPS-CM impaired the neurogenesis of NSCs, characterized by decreased proliferation, enhanced gliogenesis, and declined viability. Dexmedetomidine alleviated LPS-CM-induced impairment of neurogenesis in a dose-dependent manner. Yohimbine, as well as BRL-44408, reversed the effects of dexmedetomidine. We established a mouse model of SAE via cecal ligation and perforation (CLP). CLP-induced astrocyte-related neuroinflammation and hippocampal neurogenesis deficits, accompanied by learning and memory decline, which were reversed by dexmedetomidine. The effect of dexmedetomidine was blocked by BRL-44408. Collectively, our findings support the conclusion that dexmedetomidine can protect against SAE, likely mediated by the combination of inhibiting neuroinflammation via the astrocytic α2A-adrenoceptor with attenuating neuroinflammation-induced hippocampal neurogenesis deficits via NSCs α2A-adrenoceptor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信