聚氨酯微相载荷传递能力的分子尺度研究

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Hongdeok Kim, Joonmyung Choi
{"title":"聚氨酯微相载荷传递能力的分子尺度研究","authors":"Hongdeok Kim, Joonmyung Choi","doi":"10.1021/acs.macromol.4c01773","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the mechanism by which the microphase structure of polyurethane (PU), manipulated by the chemical composition, determines its macroscopic mechanical properties. Increasing the hard segment content induced a microphase transition from globular to elongated to bicontinuous. This transition significantly altered the mechanical behavior of PU from hyperelastic to elasto-plastic. This enhancement in the mechanical properties was related to the load-transfer capacity of the hard domains in each microphase. In the globular phase, most of the strain energy was absorbed by the soft matrix, limiting the contribution of the hard phase to the mechanical properties. Conversely, elongated discontinuous structures facilitated a homogeneous strain distribution during tension, promoting an immediate load transfer to the hard domain. To quantitatively evaluate the load-transfer efficiency, a mechanical model in which one soft hyperelastic spring was coupled to two rigid elasto-plastic springs was considered. The effects of the microphase morphology and hard domain dissociation on the load-transfer capability were identified. This study contributes to a molecular-level understanding of the deformation behavior and mechanical response of microphase-separated PU.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"6 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular-Scale Investigation of the Microphase-Dependent Load Transfer Capability of Polyurethane\",\"authors\":\"Hongdeok Kim, Joonmyung Choi\",\"doi\":\"10.1021/acs.macromol.4c01773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated the mechanism by which the microphase structure of polyurethane (PU), manipulated by the chemical composition, determines its macroscopic mechanical properties. Increasing the hard segment content induced a microphase transition from globular to elongated to bicontinuous. This transition significantly altered the mechanical behavior of PU from hyperelastic to elasto-plastic. This enhancement in the mechanical properties was related to the load-transfer capacity of the hard domains in each microphase. In the globular phase, most of the strain energy was absorbed by the soft matrix, limiting the contribution of the hard phase to the mechanical properties. Conversely, elongated discontinuous structures facilitated a homogeneous strain distribution during tension, promoting an immediate load transfer to the hard domain. To quantitatively evaluate the load-transfer efficiency, a mechanical model in which one soft hyperelastic spring was coupled to two rigid elasto-plastic springs was considered. The effects of the microphase morphology and hard domain dissociation on the load-transfer capability were identified. This study contributes to a molecular-level understanding of the deformation behavior and mechanical response of microphase-separated PU.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01773\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01773","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探讨了聚氨酯(PU)的微相结构在化学成分的作用下决定其宏观机械性能的机理。增加硬段含量会引起微相从球状到拉长再到双连续的转变。这种转变极大地改变了聚氨酯的机械行为,使其从超弹性转变为弹塑性。机械性能的提高与每种微相中硬域的载荷传递能力有关。在球状相中,大部分应变能被软基质吸收,限制了硬相对机械性能的贡献。相反,拉伸时拉长的非连续结构有利于应变的均匀分布,从而促进载荷立即转移到硬域。为了定量评估负载传递效率,我们考虑了一个机械模型,其中一个软超弹性弹簧与两个刚性弹塑性弹簧耦合。研究确定了微相形态和硬域解离对载荷传递能力的影响。这项研究有助于从分子层面理解微相分离聚氨酯的变形行为和机械响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular-Scale Investigation of the Microphase-Dependent Load Transfer Capability of Polyurethane

Molecular-Scale Investigation of the Microphase-Dependent Load Transfer Capability of Polyurethane
In this study, we investigated the mechanism by which the microphase structure of polyurethane (PU), manipulated by the chemical composition, determines its macroscopic mechanical properties. Increasing the hard segment content induced a microphase transition from globular to elongated to bicontinuous. This transition significantly altered the mechanical behavior of PU from hyperelastic to elasto-plastic. This enhancement in the mechanical properties was related to the load-transfer capacity of the hard domains in each microphase. In the globular phase, most of the strain energy was absorbed by the soft matrix, limiting the contribution of the hard phase to the mechanical properties. Conversely, elongated discontinuous structures facilitated a homogeneous strain distribution during tension, promoting an immediate load transfer to the hard domain. To quantitatively evaluate the load-transfer efficiency, a mechanical model in which one soft hyperelastic spring was coupled to two rigid elasto-plastic springs was considered. The effects of the microphase morphology and hard domain dissociation on the load-transfer capability were identified. This study contributes to a molecular-level understanding of the deformation behavior and mechanical response of microphase-separated PU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信