Abhinandan Das, Krishnendu Sinha and Suman Chakrabarty
{"title":"阐明抗糖尿病药物氯丙酰胺非竞争性抑制乙酰胆碱酯酶的分子机制:鉴定新的异构位点","authors":"Abhinandan Das, Krishnendu Sinha and Suman Chakrabarty","doi":"10.1039/D4CP02921F","DOIUrl":null,"url":null,"abstract":"<p >Acetylcholinesterase (AChE) has emerged as an important drug target for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Recent experimental studies indicate that certain antidiabetic drugs can be repurposed as potent AChE inhibitors. Enzymatic kinetic assays suggest that the antidiabetic drug chlorpropamide (CPM) acts as a noncompetitive inhibitor, but the mechanism of action and the binding site(s) of interaction with AChE are not known. In this work, we have carried out molecular dynamics (MD) simulations to discover a new allosteric site in addition to the known peripheral anionic site (PAS) as a potential binding site of this noncompetitive inhibitor. We show that the conformational ensemble of the catalytic triad, particularly the HIS447, undergoes a significant population shift on ligand binding that is responsible for deactivation of the enzyme. We also elucidate the pathway of the allosteric signaling in terms of locally correlated domains of the inter-residue interaction network. Thus, our work identifies a new allosteric site for AChE inhibition and eludiates the underlying mechanistic principles. These results would be useful for the rational design of new noncompetitive inhibitors for AChE.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 46","pages":" 28894-28903"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the molecular mechanism of noncompetitive inhibition of acetylcholinesterase by an antidiabetic drug chlorpropamide: identification of new allosteric sites†\",\"authors\":\"Abhinandan Das, Krishnendu Sinha and Suman Chakrabarty\",\"doi\":\"10.1039/D4CP02921F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Acetylcholinesterase (AChE) has emerged as an important drug target for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Recent experimental studies indicate that certain antidiabetic drugs can be repurposed as potent AChE inhibitors. Enzymatic kinetic assays suggest that the antidiabetic drug chlorpropamide (CPM) acts as a noncompetitive inhibitor, but the mechanism of action and the binding site(s) of interaction with AChE are not known. In this work, we have carried out molecular dynamics (MD) simulations to discover a new allosteric site in addition to the known peripheral anionic site (PAS) as a potential binding site of this noncompetitive inhibitor. We show that the conformational ensemble of the catalytic triad, particularly the HIS447, undergoes a significant population shift on ligand binding that is responsible for deactivation of the enzyme. We also elucidate the pathway of the allosteric signaling in terms of locally correlated domains of the inter-residue interaction network. Thus, our work identifies a new allosteric site for AChE inhibition and eludiates the underlying mechanistic principles. These results would be useful for the rational design of new noncompetitive inhibitors for AChE.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 46\",\"pages\":\" 28894-28903\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02921f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02921f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Elucidating the molecular mechanism of noncompetitive inhibition of acetylcholinesterase by an antidiabetic drug chlorpropamide: identification of new allosteric sites†
Acetylcholinesterase (AChE) has emerged as an important drug target for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Recent experimental studies indicate that certain antidiabetic drugs can be repurposed as potent AChE inhibitors. Enzymatic kinetic assays suggest that the antidiabetic drug chlorpropamide (CPM) acts as a noncompetitive inhibitor, but the mechanism of action and the binding site(s) of interaction with AChE are not known. In this work, we have carried out molecular dynamics (MD) simulations to discover a new allosteric site in addition to the known peripheral anionic site (PAS) as a potential binding site of this noncompetitive inhibitor. We show that the conformational ensemble of the catalytic triad, particularly the HIS447, undergoes a significant population shift on ligand binding that is responsible for deactivation of the enzyme. We also elucidate the pathway of the allosteric signaling in terms of locally correlated domains of the inter-residue interaction network. Thus, our work identifies a new allosteric site for AChE inhibition and eludiates the underlying mechanistic principles. These results would be useful for the rational design of new noncompetitive inhibitors for AChE.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.