自噬靶向嵌合体可诱导阉割耐药前列腺癌中雄激素受体突变体和 AR-v7 的降解

IF 12.5 1区 医学 Q1 ONCOLOGY
Tae Hyun Bae, Ki Woon Sung, Tri M. Pham, Abdo J. Najy, Alaleh Zamiri, Hyejeong Jang, Su Ran Mun, Seongho Kim, Ha Kyoung Kwon, Yeon Sung Son, Dongping Shi, Steven Kregel, Elisabeth I. Heath, Michael L. Cher, Yong Tae Kwon, Hyeong-Reh C. Kim
{"title":"自噬靶向嵌合体可诱导阉割耐药前列腺癌中雄激素受体突变体和 AR-v7 的降解","authors":"Tae Hyun Bae, Ki Woon Sung, Tri M. Pham, Abdo J. Najy, Alaleh Zamiri, Hyejeong Jang, Su Ran Mun, Seongho Kim, Ha Kyoung Kwon, Yeon Sung Son, Dongping Shi, Steven Kregel, Elisabeth I. Heath, Michael L. Cher, Yong Tae Kwon, Hyeong-Reh C. Kim","doi":"10.1158/0008-5472.can-24-0591","DOIUrl":null,"url":null,"abstract":"Genetic alterations play a pivotal role in various human diseases, particularly cancer. The androgen receptor (AR) is a crucial transcription factor driving prostate cancer (PCa) progression across all stages. Current AR-targeting therapies utilize competitive AR antagonists or pathway suppressors. However, therapy resistance often emerges due to AR mutations and AR splice variants, such as AR-v7. To overcome this, we developed ATC-324, an AR degrader using the innovative protein degradation technology platform AUTOphagy-TArgeting Chimera (AUTOTAC). ATC-324 was designed to comprise enzalutamide, an AR inhibitor, as a target-binding ligand and YT 6-2, a ligand of the autophagy receptor p62/SQSTM1, as an autophagy-targeting ligand. ATC-324 induces the formation of the AR/p62 complex, leading to autophagy-lysosomal degradation of AR. Importantly, ATC-324 effectively degrades AR mutants frequently detected in PCa and co-degrades AR-v7 as a heterodimer with full-length AR. ATC-324 reduces nuclear AR levels and downregulates the target gene expression of AR and AR-v7, leading to cytotoxicity in AR-positive PCa cells. We also provide evidence of the therapeutic potential of ATC-324 in vivo as well as ex vivo bone organ culture. Moreover, ATC-324 remains potent in enzalutamide-resistant PCa cells. These results demonstrate the potential of the AUTOTAC platform to target previously considered undruggable proteins and overcome certain drug resistance mechanisms.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"33 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Autophagy-Targeting Chimera Induces Degradation of Androgen Receptor Mutants and AR-v7 in Castration-Resistant Prostate Cancer\",\"authors\":\"Tae Hyun Bae, Ki Woon Sung, Tri M. Pham, Abdo J. Najy, Alaleh Zamiri, Hyejeong Jang, Su Ran Mun, Seongho Kim, Ha Kyoung Kwon, Yeon Sung Son, Dongping Shi, Steven Kregel, Elisabeth I. Heath, Michael L. Cher, Yong Tae Kwon, Hyeong-Reh C. Kim\",\"doi\":\"10.1158/0008-5472.can-24-0591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic alterations play a pivotal role in various human diseases, particularly cancer. The androgen receptor (AR) is a crucial transcription factor driving prostate cancer (PCa) progression across all stages. Current AR-targeting therapies utilize competitive AR antagonists or pathway suppressors. However, therapy resistance often emerges due to AR mutations and AR splice variants, such as AR-v7. To overcome this, we developed ATC-324, an AR degrader using the innovative protein degradation technology platform AUTOphagy-TArgeting Chimera (AUTOTAC). ATC-324 was designed to comprise enzalutamide, an AR inhibitor, as a target-binding ligand and YT 6-2, a ligand of the autophagy receptor p62/SQSTM1, as an autophagy-targeting ligand. ATC-324 induces the formation of the AR/p62 complex, leading to autophagy-lysosomal degradation of AR. Importantly, ATC-324 effectively degrades AR mutants frequently detected in PCa and co-degrades AR-v7 as a heterodimer with full-length AR. ATC-324 reduces nuclear AR levels and downregulates the target gene expression of AR and AR-v7, leading to cytotoxicity in AR-positive PCa cells. We also provide evidence of the therapeutic potential of ATC-324 in vivo as well as ex vivo bone organ culture. Moreover, ATC-324 remains potent in enzalutamide-resistant PCa cells. These results demonstrate the potential of the AUTOTAC platform to target previously considered undruggable proteins and overcome certain drug resistance mechanisms.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-24-0591\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-0591","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因改变在各种人类疾病,尤其是癌症中起着举足轻重的作用。雄激素受体(AR)是驱动前列腺癌(PCa)各阶段进展的关键转录因子。目前的 AR 靶向疗法利用竞争性 AR 拮抗剂或通路抑制剂。然而,由于AR突变和AR剪接变体(如AR-v7),常常会出现耐药性。为了克服这一问题,我们利用创新性蛋白质降解技术平台 AUTOphagy-TArgeting Chimera(AUTOTAC)开发了一种 AR 降解剂 ATC-324。ATC-324 由 AR 抑制剂恩杂鲁胺和自噬受体 p62/SQSTM1 的配体 YT 6-2 组成,前者是目标结合配体,后者是自噬靶向配体。ATC-324 可诱导 AR/p62 复合物的形成,从而导致 AR 的自噬-溶酶体降解。重要的是,ATC-324 能有效降解 PCa 中经常检测到的 AR 突变体,并以异源二聚体的形式与全长 AR 共同降解 AR-v7。ATC-324 可降低核 AR 水平,下调 AR 和 AR-v7 的靶基因表达,从而对 AR 阳性 PCa 细胞产生细胞毒性。我们还提供了 ATC-324 在体内和体外骨器官培养中的治疗潜力证据。此外,ATC-324 对恩扎鲁胺耐药的 PCa 细胞仍然有效。这些结果证明了 AUTOTAC 平台的潜力,它可以靶向以前被认为是不可药用的蛋白质,并克服某些耐药机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autophagy-Targeting Chimera Induces Degradation of Androgen Receptor Mutants and AR-v7 in Castration-Resistant Prostate Cancer
Genetic alterations play a pivotal role in various human diseases, particularly cancer. The androgen receptor (AR) is a crucial transcription factor driving prostate cancer (PCa) progression across all stages. Current AR-targeting therapies utilize competitive AR antagonists or pathway suppressors. However, therapy resistance often emerges due to AR mutations and AR splice variants, such as AR-v7. To overcome this, we developed ATC-324, an AR degrader using the innovative protein degradation technology platform AUTOphagy-TArgeting Chimera (AUTOTAC). ATC-324 was designed to comprise enzalutamide, an AR inhibitor, as a target-binding ligand and YT 6-2, a ligand of the autophagy receptor p62/SQSTM1, as an autophagy-targeting ligand. ATC-324 induces the formation of the AR/p62 complex, leading to autophagy-lysosomal degradation of AR. Importantly, ATC-324 effectively degrades AR mutants frequently detected in PCa and co-degrades AR-v7 as a heterodimer with full-length AR. ATC-324 reduces nuclear AR levels and downregulates the target gene expression of AR and AR-v7, leading to cytotoxicity in AR-positive PCa cells. We also provide evidence of the therapeutic potential of ATC-324 in vivo as well as ex vivo bone organ culture. Moreover, ATC-324 remains potent in enzalutamide-resistant PCa cells. These results demonstrate the potential of the AUTOTAC platform to target previously considered undruggable proteins and overcome certain drug resistance mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信