Terrance J. Haanen, Sophie Boock, Catherine G. Callahan, Irene Peris, Kaitlin P. Zawacki, Brynne Raines, Charles A. Nino, Brian Tran, Alexis Harold, Gabrielle Hodges Onishi, Matthew Hinderman, Amanda Dowdican, Wei Huang, Derek J. Taylor, Sarah E. Taylor, Mark W. Jackson, Analisa DiFeo, Caitlin M. O'Connor, Goutham Narla
{"title":"突变 PP2A 诱导 IGFBP2 分泌,促进高级别子宫癌的发展","authors":"Terrance J. Haanen, Sophie Boock, Catherine G. Callahan, Irene Peris, Kaitlin P. Zawacki, Brynne Raines, Charles A. Nino, Brian Tran, Alexis Harold, Gabrielle Hodges Onishi, Matthew Hinderman, Amanda Dowdican, Wei Huang, Derek J. Taylor, Sarah E. Taylor, Mark W. Jackson, Analisa DiFeo, Caitlin M. O'Connor, Goutham Narla","doi":"10.1158/0008-5472.can-24-1263","DOIUrl":null,"url":null,"abstract":"Uterine serous carcinoma (USC) and uterine carcinosarcoma (UCS) tumors are uniquely aggressive, suggesting that the primary tumor is intrinsically equipped to disseminate and metastasize. Previous work identified mutational hotspots within PPP2R1A, which encodes the Aα scaffolding subunit of protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine phosphatase. Two recurrent heterozygous PPP2R1A mutations, P179R and S256F, occur exclusively within high-grade subtypes of uterine cancer and can drive tumorigenesis and metastasis. Elucidation of the mechanisms by which PP2A-Aα mutants promote tumor development and progression could help identify therapeutic opportunities. Here, we showed that expression of these mutants in USC/UCS cell-lines enhanced tumor-initiating capacity, drove a hybrid epithelial-to-mesenchymal (EM) plasticity phenotype, and elevated secretion of the tumorigenic cytokine IGFBP2. Therapeutic targeting of the IGFBP2/IGF1R signaling axis using small molecules and genetic approaches resulted in marked tumor growth inhibition. Mechanistically, PP2A regulated IGFBP2 expression through the transcription factor, NF-κB, which harbors a B56 recognition motif. Collectively, these results identify a role for PP2A in regulating paracrine cancer cell signaling that can be targeted to block the initiation and metastasis of high-grade uterine cancer.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"127 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutant PP2A Induces IGFBP2 Secretion to Promote Development of High-Grade Uterine Cancer\",\"authors\":\"Terrance J. Haanen, Sophie Boock, Catherine G. Callahan, Irene Peris, Kaitlin P. Zawacki, Brynne Raines, Charles A. Nino, Brian Tran, Alexis Harold, Gabrielle Hodges Onishi, Matthew Hinderman, Amanda Dowdican, Wei Huang, Derek J. Taylor, Sarah E. Taylor, Mark W. Jackson, Analisa DiFeo, Caitlin M. O'Connor, Goutham Narla\",\"doi\":\"10.1158/0008-5472.can-24-1263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uterine serous carcinoma (USC) and uterine carcinosarcoma (UCS) tumors are uniquely aggressive, suggesting that the primary tumor is intrinsically equipped to disseminate and metastasize. Previous work identified mutational hotspots within PPP2R1A, which encodes the Aα scaffolding subunit of protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine phosphatase. Two recurrent heterozygous PPP2R1A mutations, P179R and S256F, occur exclusively within high-grade subtypes of uterine cancer and can drive tumorigenesis and metastasis. Elucidation of the mechanisms by which PP2A-Aα mutants promote tumor development and progression could help identify therapeutic opportunities. Here, we showed that expression of these mutants in USC/UCS cell-lines enhanced tumor-initiating capacity, drove a hybrid epithelial-to-mesenchymal (EM) plasticity phenotype, and elevated secretion of the tumorigenic cytokine IGFBP2. Therapeutic targeting of the IGFBP2/IGF1R signaling axis using small molecules and genetic approaches resulted in marked tumor growth inhibition. Mechanistically, PP2A regulated IGFBP2 expression through the transcription factor, NF-κB, which harbors a B56 recognition motif. Collectively, these results identify a role for PP2A in regulating paracrine cancer cell signaling that can be targeted to block the initiation and metastasis of high-grade uterine cancer.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-24-1263\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1263","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Mutant PP2A Induces IGFBP2 Secretion to Promote Development of High-Grade Uterine Cancer
Uterine serous carcinoma (USC) and uterine carcinosarcoma (UCS) tumors are uniquely aggressive, suggesting that the primary tumor is intrinsically equipped to disseminate and metastasize. Previous work identified mutational hotspots within PPP2R1A, which encodes the Aα scaffolding subunit of protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine phosphatase. Two recurrent heterozygous PPP2R1A mutations, P179R and S256F, occur exclusively within high-grade subtypes of uterine cancer and can drive tumorigenesis and metastasis. Elucidation of the mechanisms by which PP2A-Aα mutants promote tumor development and progression could help identify therapeutic opportunities. Here, we showed that expression of these mutants in USC/UCS cell-lines enhanced tumor-initiating capacity, drove a hybrid epithelial-to-mesenchymal (EM) plasticity phenotype, and elevated secretion of the tumorigenic cytokine IGFBP2. Therapeutic targeting of the IGFBP2/IGF1R signaling axis using small molecules and genetic approaches resulted in marked tumor growth inhibition. Mechanistically, PP2A regulated IGFBP2 expression through the transcription factor, NF-κB, which harbors a B56 recognition motif. Collectively, these results identify a role for PP2A in regulating paracrine cancer cell signaling that can be targeted to block the initiation and metastasis of high-grade uterine cancer.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.