Dalia Abdrabou, M. K. Ahmed, Sh. A. Khairy, H. H. Hassan, Th. M. El-Sherbini
{"title":"利用铁/银离子掺杂剂对 CdS/石墨烯氧化物进行结构改性以降解亚甲基蓝","authors":"Dalia Abdrabou, M. K. Ahmed, Sh. A. Khairy, H. H. Hassan, Th. M. El-Sherbini","doi":"10.1007/s13538-024-01637-1","DOIUrl":null,"url":null,"abstract":"<div><p>Global demand for pollution removal agents requires advanced materials to provide a good protocol to keep clean water resources. The composition of CdS was modified with ionic dopants including iron (Fe) and silver (Ag) and is incorporated into graphene oxide (GO) nanoparticles. The obtained compositions are CdS, Fe-CdS, Ag-CdS, CdS@GO, Fe-CdS@GO, and Ag-CdS@GO that have been fabricated by the co-precipitation method and examined by several techniques to estimate the morphological, optical, and structural properties using TEM, SEM, UV–Vis analysis, and XRD. The crystallite size of the CdS@Go was measured using the Williamson-Hall (W–H) method and was found to be around 28.6 nm. Furthermore, the a-axis was found to be 5.78 Å and 5.80 Å for cubic crystals and the a-axis achieved 14.28 to 14.24 Å for an orthorhombic crystal of CdS, respectively. The average roughness varied from 32.30 ± 3.3 to 66.65 ± 10.9 nm for CdS and Ag-CdS@GO. The degradation of methylene blue (MB) is increased from 75.56, 73.87, 76.01, 81.53, 89.34, and 91.68% for CdS, Fe-CdS, Ag-CdS, CdS@GO, Fe-CdS@GO, and Ag-CdS@GO after 60 min of exposure under visible light irradiation. The pseudo-first-order constant (K<sub>app</sub>) is increased from 4.4 × 10<sup>−3</sup> to 39.4 × 10<sup>−3</sup> min<sup>−1</sup> for CdS and Ag-CdS@GO.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13538-024-01637-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural Modifications of CdS/Graphene Oxide with Ionic Dopants of Fe/Ag for Degradation of Methylene Blue\",\"authors\":\"Dalia Abdrabou, M. K. Ahmed, Sh. A. Khairy, H. H. Hassan, Th. M. El-Sherbini\",\"doi\":\"10.1007/s13538-024-01637-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global demand for pollution removal agents requires advanced materials to provide a good protocol to keep clean water resources. The composition of CdS was modified with ionic dopants including iron (Fe) and silver (Ag) and is incorporated into graphene oxide (GO) nanoparticles. The obtained compositions are CdS, Fe-CdS, Ag-CdS, CdS@GO, Fe-CdS@GO, and Ag-CdS@GO that have been fabricated by the co-precipitation method and examined by several techniques to estimate the morphological, optical, and structural properties using TEM, SEM, UV–Vis analysis, and XRD. The crystallite size of the CdS@Go was measured using the Williamson-Hall (W–H) method and was found to be around 28.6 nm. Furthermore, the a-axis was found to be 5.78 Å and 5.80 Å for cubic crystals and the a-axis achieved 14.28 to 14.24 Å for an orthorhombic crystal of CdS, respectively. The average roughness varied from 32.30 ± 3.3 to 66.65 ± 10.9 nm for CdS and Ag-CdS@GO. The degradation of methylene blue (MB) is increased from 75.56, 73.87, 76.01, 81.53, 89.34, and 91.68% for CdS, Fe-CdS, Ag-CdS, CdS@GO, Fe-CdS@GO, and Ag-CdS@GO after 60 min of exposure under visible light irradiation. The pseudo-first-order constant (K<sub>app</sub>) is increased from 4.4 × 10<sup>−3</sup> to 39.4 × 10<sup>−3</sup> min<sup>−1</sup> for CdS and Ag-CdS@GO.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13538-024-01637-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-024-01637-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-024-01637-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural Modifications of CdS/Graphene Oxide with Ionic Dopants of Fe/Ag for Degradation of Methylene Blue
Global demand for pollution removal agents requires advanced materials to provide a good protocol to keep clean water resources. The composition of CdS was modified with ionic dopants including iron (Fe) and silver (Ag) and is incorporated into graphene oxide (GO) nanoparticles. The obtained compositions are CdS, Fe-CdS, Ag-CdS, CdS@GO, Fe-CdS@GO, and Ag-CdS@GO that have been fabricated by the co-precipitation method and examined by several techniques to estimate the morphological, optical, and structural properties using TEM, SEM, UV–Vis analysis, and XRD. The crystallite size of the CdS@Go was measured using the Williamson-Hall (W–H) method and was found to be around 28.6 nm. Furthermore, the a-axis was found to be 5.78 Å and 5.80 Å for cubic crystals and the a-axis achieved 14.28 to 14.24 Å for an orthorhombic crystal of CdS, respectively. The average roughness varied from 32.30 ± 3.3 to 66.65 ± 10.9 nm for CdS and Ag-CdS@GO. The degradation of methylene blue (MB) is increased from 75.56, 73.87, 76.01, 81.53, 89.34, and 91.68% for CdS, Fe-CdS, Ag-CdS, CdS@GO, Fe-CdS@GO, and Ag-CdS@GO after 60 min of exposure under visible light irradiation. The pseudo-first-order constant (Kapp) is increased from 4.4 × 10−3 to 39.4 × 10−3 min−1 for CdS and Ag-CdS@GO.
期刊介绍:
The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.