EU-Net:基于语义融合和边缘引导的道路裂缝图像分割网络

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jing Gao, Yiting Gui, Wen Ji, Jun Wen, Yueyu Zhou, Xiaoxiao Huang, Qiang Wang, Chenlong Wei, Zhong Huang, Chuanlong Wang, Zhu Zhu
{"title":"EU-Net:基于语义融合和边缘引导的道路裂缝图像分割网络","authors":"Jing Gao,&nbsp;Yiting Gui,&nbsp;Wen Ji,&nbsp;Jun Wen,&nbsp;Yueyu Zhou,&nbsp;Xiaoxiao Huang,&nbsp;Qiang Wang,&nbsp;Chenlong Wei,&nbsp;Zhong Huang,&nbsp;Chuanlong Wang,&nbsp;Zhu Zhu","doi":"10.1007/s10489-024-05788-1","DOIUrl":null,"url":null,"abstract":"<div><p>An enhanced U-shaped network (EU-Net) based on deep semantic information fusion and edge information guidance is studied to improve the segmentation accuracy of road cracks under hazy conditions. The EU-Net comprises multimode feature fusion, side information fusion and edge extraction modules. The feature and side information fusion modules are applied to fuse deep semantic information with multiscale features. The edge extraction module uses the Canny edge detection algorithm to guide and constrain crack edge information from the neural network. The experimental results show that the method in this work is superior to the most widely used crack segmentation methods. Compared with that of the baseline U-Net, the mIoU of the EU-Net increases by 0.59% and 5.7% on the Crack500 and Masonry datasets, respectively.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 24","pages":"12949 - 12963"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EU-Net: a segmentation network based on semantic fusion and edge guidance for road crack images\",\"authors\":\"Jing Gao,&nbsp;Yiting Gui,&nbsp;Wen Ji,&nbsp;Jun Wen,&nbsp;Yueyu Zhou,&nbsp;Xiaoxiao Huang,&nbsp;Qiang Wang,&nbsp;Chenlong Wei,&nbsp;Zhong Huang,&nbsp;Chuanlong Wang,&nbsp;Zhu Zhu\",\"doi\":\"10.1007/s10489-024-05788-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An enhanced U-shaped network (EU-Net) based on deep semantic information fusion and edge information guidance is studied to improve the segmentation accuracy of road cracks under hazy conditions. The EU-Net comprises multimode feature fusion, side information fusion and edge extraction modules. The feature and side information fusion modules are applied to fuse deep semantic information with multiscale features. The edge extraction module uses the Canny edge detection algorithm to guide and constrain crack edge information from the neural network. The experimental results show that the method in this work is superior to the most widely used crack segmentation methods. Compared with that of the baseline U-Net, the mIoU of the EU-Net increases by 0.59% and 5.7% on the Crack500 and Masonry datasets, respectively.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"54 24\",\"pages\":\"12949 - 12963\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05788-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05788-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种基于深度语义信息融合和边缘信息引导的增强型 U 形网络(EU-Net),以提高雾霾条件下道路裂缝的分割精度。EU 型网络由多模式特征融合、侧边信息融合和边缘提取模块组成。特征融合模块和侧信息融合模块用于将深度语义信息与多尺度特征进行融合。边缘提取模块使用 Canny 边缘检测算法来引导和约束神经网络中的裂缝边缘信息。实验结果表明,该方法优于目前最广泛使用的裂缝分割方法。与基准 U-Net 相比,EU-Net 在 Crack500 和 Masonry 数据集上的 mIoU 分别提高了 0.59% 和 5.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EU-Net: a segmentation network based on semantic fusion and edge guidance for road crack images

An enhanced U-shaped network (EU-Net) based on deep semantic information fusion and edge information guidance is studied to improve the segmentation accuracy of road cracks under hazy conditions. The EU-Net comprises multimode feature fusion, side information fusion and edge extraction modules. The feature and side information fusion modules are applied to fuse deep semantic information with multiscale features. The edge extraction module uses the Canny edge detection algorithm to guide and constrain crack edge information from the neural network. The experimental results show that the method in this work is superior to the most widely used crack segmentation methods. Compared with that of the baseline U-Net, the mIoU of the EU-Net increases by 0.59% and 5.7% on the Crack500 and Masonry datasets, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信