{"title":"使用自主踝关节外骨骼辅助脑瘫患者在社区行走的可行性","authors":"Collin D. Bowersock;Zachary F. Lerner","doi":"10.1109/OJEMB.2024.3475911","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i>\n This pilot study investigated the feasibility and efficacy of using autonomous ankle exoskeletons in community settings among individuals with cerebral palsy (CP). Five participants completed two structured community walking protocols: a week-long ankle exoskeleton acclimation and training intervention, and a dose-matched Sham intervention of unassisted walking. \n<italic>Results:</i>\n Results demonstrated significant improvements in acclimatized walking performance with the ankle exoskeleton, including increased speed and stride length. Participants also reported increased enjoyment and perceived benefits of using the exoskeleton. While ankle exoskeleton training did not lead to significant improvements in unassisted walking, this study demonstrates the feasibility of using ankle exoskeletons in the real world by people with CP. \n<italic>Conclusions:</i>\n This study highlights the potential of wearable exoskeletons to augment community walking performance in CP, laying a foundation for further exploration in real-world environments.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10709375","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Using Autonomous Ankle Exoskeletons to Augment Community Walking in Cerebral Palsy\",\"authors\":\"Collin D. Bowersock;Zachary F. Lerner\",\"doi\":\"10.1109/OJEMB.2024.3475911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objective:</i>\\n This pilot study investigated the feasibility and efficacy of using autonomous ankle exoskeletons in community settings among individuals with cerebral palsy (CP). Five participants completed two structured community walking protocols: a week-long ankle exoskeleton acclimation and training intervention, and a dose-matched Sham intervention of unassisted walking. \\n<italic>Results:</i>\\n Results demonstrated significant improvements in acclimatized walking performance with the ankle exoskeleton, including increased speed and stride length. Participants also reported increased enjoyment and perceived benefits of using the exoskeleton. While ankle exoskeleton training did not lead to significant improvements in unassisted walking, this study demonstrates the feasibility of using ankle exoskeletons in the real world by people with CP. \\n<italic>Conclusions:</i>\\n This study highlights the potential of wearable exoskeletons to augment community walking performance in CP, laying a foundation for further exploration in real-world environments.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10709375\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10709375/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10709375/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Feasibility of Using Autonomous Ankle Exoskeletons to Augment Community Walking in Cerebral Palsy
Objective:
This pilot study investigated the feasibility and efficacy of using autonomous ankle exoskeletons in community settings among individuals with cerebral palsy (CP). Five participants completed two structured community walking protocols: a week-long ankle exoskeleton acclimation and training intervention, and a dose-matched Sham intervention of unassisted walking.
Results:
Results demonstrated significant improvements in acclimatized walking performance with the ankle exoskeleton, including increased speed and stride length. Participants also reported increased enjoyment and perceived benefits of using the exoskeleton. While ankle exoskeleton training did not lead to significant improvements in unassisted walking, this study demonstrates the feasibility of using ankle exoskeletons in the real world by people with CP.
Conclusions:
This study highlights the potential of wearable exoskeletons to augment community walking performance in CP, laying a foundation for further exploration in real-world environments.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.