{"title":"从石墨二乙烯带形成纳米管的退火方法:理论预测","authors":"Bo Song, Kun Cai, Jiao Shi, Qinghua Qin","doi":"10.1039/d4cp03573a","DOIUrl":null,"url":null,"abstract":"A precisely controllable heat treatment process is critical for nanofabrication. We developed a two-step method to fabricate a graphdiyne nanotube (GNT) through heat treatment in an argon environment. Initially, we placed a carbon nanotube (CNT) near a rectangular graphdiyne nanoribbon (GNR) to trigger the self-scrolling of the ribbon. Once the ribbon forms a scroll, we increased the ambient temperature to induce the formation of interlayer covalent C-C bonds within the scroll, ultimately resulting in a GNT after system annealing. The self-scrolling process of the GNR, protected by argon gas, is highly sensitive to ambient temperature. Molecular dynamics simulations show that self-scrolling can be controlled by adjusting the gas density and/or ambient temperature. In summary, a controlled heating process starting from an ultralow temperature initiates the self-scrolling of a GNR onto a CNT, followed by the generation of covalent bonds within the GNR at higher temperatures. Since the new covalent bond topology remains stable even after cooling, a stable GNT is obtained. The size of the pores on the GNT shell depends on the number of newly formed bonds. These insights will enhance the fabrication and application of GNTs as nanofilters.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annealing approach to form a nanotube from graphdiyne ribbon: A theoretical prediction\",\"authors\":\"Bo Song, Kun Cai, Jiao Shi, Qinghua Qin\",\"doi\":\"10.1039/d4cp03573a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A precisely controllable heat treatment process is critical for nanofabrication. We developed a two-step method to fabricate a graphdiyne nanotube (GNT) through heat treatment in an argon environment. Initially, we placed a carbon nanotube (CNT) near a rectangular graphdiyne nanoribbon (GNR) to trigger the self-scrolling of the ribbon. Once the ribbon forms a scroll, we increased the ambient temperature to induce the formation of interlayer covalent C-C bonds within the scroll, ultimately resulting in a GNT after system annealing. The self-scrolling process of the GNR, protected by argon gas, is highly sensitive to ambient temperature. Molecular dynamics simulations show that self-scrolling can be controlled by adjusting the gas density and/or ambient temperature. In summary, a controlled heating process starting from an ultralow temperature initiates the self-scrolling of a GNR onto a CNT, followed by the generation of covalent bonds within the GNR at higher temperatures. Since the new covalent bond topology remains stable even after cooling, a stable GNT is obtained. The size of the pores on the GNT shell depends on the number of newly formed bonds. These insights will enhance the fabrication and application of GNTs as nanofilters.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp03573a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03573a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Annealing approach to form a nanotube from graphdiyne ribbon: A theoretical prediction
A precisely controllable heat treatment process is critical for nanofabrication. We developed a two-step method to fabricate a graphdiyne nanotube (GNT) through heat treatment in an argon environment. Initially, we placed a carbon nanotube (CNT) near a rectangular graphdiyne nanoribbon (GNR) to trigger the self-scrolling of the ribbon. Once the ribbon forms a scroll, we increased the ambient temperature to induce the formation of interlayer covalent C-C bonds within the scroll, ultimately resulting in a GNT after system annealing. The self-scrolling process of the GNR, protected by argon gas, is highly sensitive to ambient temperature. Molecular dynamics simulations show that self-scrolling can be controlled by adjusting the gas density and/or ambient temperature. In summary, a controlled heating process starting from an ultralow temperature initiates the self-scrolling of a GNR onto a CNT, followed by the generation of covalent bonds within the GNR at higher temperatures. Since the new covalent bond topology remains stable even after cooling, a stable GNT is obtained. The size of the pores on the GNT shell depends on the number of newly formed bonds. These insights will enhance the fabrication and application of GNTs as nanofilters.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.