Farah Kloub, Samih B. Al Rawashdeh, Ghayda Al Rawashdeh
{"title":"基于地学、水文学和气候模型的气候变化对 Al-wala 盆地的影响","authors":"Farah Kloub, Samih B. Al Rawashdeh, Ghayda Al Rawashdeh","doi":"10.1007/s12518-024-00578-3","DOIUrl":null,"url":null,"abstract":"<div><p>Jordan is severely affected by climate change, it suffers from significance fluctuation and decrease in the amounts of the annual precipitation basically during the last decade which had dire consequences for farmers and the provision of fresh water. In this study, the impact of climate change on the Al-Wala basin was analyzed during the period 2013 to 2024 using Geomatics techniques, Google Earth Engine (GEE) and machine learning codes. Soil and Water Assessment Tool (SWAT) model was used to simulate the hydrological process up to year 2064. Moreover, the Meteorological Research Institute Earth System Model (MRI-ESM2-0) was used to predict the change of water surface area of the Al-Wala dam lake in the future. Annual satellite images: Lanadsat and sentinel, covering the period of the study area were downloaded and enhanced. They permit to provide the necessary information to carry out this study. As result, an important fluctuation of the amount of annual rainfall quantity was observed as well as, the amounts of annual rainfall expected to increase and decrease wobbly for several years in the future. Overall the average annual runoff will increase by 10% compared to the baseline scenario. The minimum temperature is expected to be higher than their rates throughout the year by 0.09°- 0.11<sup>o</sup> C, this will increase the evaporation rates with about 0.03%. The analysis of the sensitivity using the SWAT model was identified by 6 parameters out of 17. The regression coefficient (R<sup>2</sup>), Nash and Sutcliffe efficiency (NSE), on monthly basis, were above 0.60 for both of them which indicates satisfactory model results.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of climate change on Al-wala basin based on geomatics, hydrology and climate models\",\"authors\":\"Farah Kloub, Samih B. Al Rawashdeh, Ghayda Al Rawashdeh\",\"doi\":\"10.1007/s12518-024-00578-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Jordan is severely affected by climate change, it suffers from significance fluctuation and decrease in the amounts of the annual precipitation basically during the last decade which had dire consequences for farmers and the provision of fresh water. In this study, the impact of climate change on the Al-Wala basin was analyzed during the period 2013 to 2024 using Geomatics techniques, Google Earth Engine (GEE) and machine learning codes. Soil and Water Assessment Tool (SWAT) model was used to simulate the hydrological process up to year 2064. Moreover, the Meteorological Research Institute Earth System Model (MRI-ESM2-0) was used to predict the change of water surface area of the Al-Wala dam lake in the future. Annual satellite images: Lanadsat and sentinel, covering the period of the study area were downloaded and enhanced. They permit to provide the necessary information to carry out this study. As result, an important fluctuation of the amount of annual rainfall quantity was observed as well as, the amounts of annual rainfall expected to increase and decrease wobbly for several years in the future. Overall the average annual runoff will increase by 10% compared to the baseline scenario. The minimum temperature is expected to be higher than their rates throughout the year by 0.09°- 0.11<sup>o</sup> C, this will increase the evaporation rates with about 0.03%. The analysis of the sensitivity using the SWAT model was identified by 6 parameters out of 17. The regression coefficient (R<sup>2</sup>), Nash and Sutcliffe efficiency (NSE), on monthly basis, were above 0.60 for both of them which indicates satisfactory model results.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-024-00578-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00578-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
The impact of climate change on Al-wala basin based on geomatics, hydrology and climate models
Jordan is severely affected by climate change, it suffers from significance fluctuation and decrease in the amounts of the annual precipitation basically during the last decade which had dire consequences for farmers and the provision of fresh water. In this study, the impact of climate change on the Al-Wala basin was analyzed during the period 2013 to 2024 using Geomatics techniques, Google Earth Engine (GEE) and machine learning codes. Soil and Water Assessment Tool (SWAT) model was used to simulate the hydrological process up to year 2064. Moreover, the Meteorological Research Institute Earth System Model (MRI-ESM2-0) was used to predict the change of water surface area of the Al-Wala dam lake in the future. Annual satellite images: Lanadsat and sentinel, covering the period of the study area were downloaded and enhanced. They permit to provide the necessary information to carry out this study. As result, an important fluctuation of the amount of annual rainfall quantity was observed as well as, the amounts of annual rainfall expected to increase and decrease wobbly for several years in the future. Overall the average annual runoff will increase by 10% compared to the baseline scenario. The minimum temperature is expected to be higher than their rates throughout the year by 0.09°- 0.11o C, this will increase the evaporation rates with about 0.03%. The analysis of the sensitivity using the SWAT model was identified by 6 parameters out of 17. The regression coefficient (R2), Nash and Sutcliffe efficiency (NSE), on monthly basis, were above 0.60 for both of them which indicates satisfactory model results.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements