{"title":"具有通量限制和非线性信号产生的趋化系统溶液的定性行为","authors":"M. Marras, Y. Chiyo","doi":"10.1007/s10440-024-00699-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider radially symmetric solutions of the following parabolic-elliptic cross-diffusion system </p><div><div><span>$$ \\left \\{ \\textstyle\\begin{array}{l} \\begin{aligned} &u_{t} = \\Delta u - \\nabla (u f(|\\nabla v|^{2} )\\nabla v), \\\\ &0= \\Delta v -\\mu (t)+ g(u), \\quad \\mu (t)= \\frac{1}{|\\Omega |} \\int _{\\Omega } g(u(\\cdot , t))dx \\\\ &u(x,0)= u_{0}(x), \\end{aligned} \\end{array}\\displaystyle \\right . $$</span></div></div><p> in <span>\\(\\Omega \\times (0,\\infty )\\)</span>, with <span>\\(\\Omega \\)</span> a ball in <span>\\(\\mathbb{R}^{N}\\)</span>, <span>\\(N\\geq 1\\)</span> under homogeneous Neumann boundary conditions, <span>\\(g(u)\\)</span> a regular function with the prototype <span>\\(g(u)= u^{k}\\)</span>, <span>\\(u\\geq 0\\)</span>, <span>\\(k>0\\)</span>. The function <span>\\(f(\\xi ) = k_{f} (1+ \\xi )^{-\\alpha }\\)</span>, <span>\\(k_{f} >0\\)</span>, describes gradient-dependent limitation of cross diffusion fluxes. Under suitable conditions on the data, we prove that the solution is global in time. If <span>\\(N\\geq 3\\)</span>, under conditions on <span>\\(f\\)</span>, <span>\\(g\\)</span> and initial data, we prove that if the solution <span>\\(u(x,t)\\)</span> blows up in <span>\\(L^{\\infty }\\)</span>-norm at finite time <span>\\(T_{max}\\)</span> then for some <span>\\(p>1\\)</span> it blows up also in <span>\\(L^{p}\\)</span>-norm. Moreover a lower bound of blow-up time is derived.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"194 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative Behavior of Solutions of a Chemotaxis System with Flux Limitation and Nonlinear Signal Production\",\"authors\":\"M. Marras, Y. Chiyo\",\"doi\":\"10.1007/s10440-024-00699-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider radially symmetric solutions of the following parabolic-elliptic cross-diffusion system </p><div><div><span>$$ \\\\left \\\\{ \\\\textstyle\\\\begin{array}{l} \\\\begin{aligned} &u_{t} = \\\\Delta u - \\\\nabla (u f(|\\\\nabla v|^{2} )\\\\nabla v), \\\\\\\\ &0= \\\\Delta v -\\\\mu (t)+ g(u), \\\\quad \\\\mu (t)= \\\\frac{1}{|\\\\Omega |} \\\\int _{\\\\Omega } g(u(\\\\cdot , t))dx \\\\\\\\ &u(x,0)= u_{0}(x), \\\\end{aligned} \\\\end{array}\\\\displaystyle \\\\right . $$</span></div></div><p> in <span>\\\\(\\\\Omega \\\\times (0,\\\\infty )\\\\)</span>, with <span>\\\\(\\\\Omega \\\\)</span> a ball in <span>\\\\(\\\\mathbb{R}^{N}\\\\)</span>, <span>\\\\(N\\\\geq 1\\\\)</span> under homogeneous Neumann boundary conditions, <span>\\\\(g(u)\\\\)</span> a regular function with the prototype <span>\\\\(g(u)= u^{k}\\\\)</span>, <span>\\\\(u\\\\geq 0\\\\)</span>, <span>\\\\(k>0\\\\)</span>. The function <span>\\\\(f(\\\\xi ) = k_{f} (1+ \\\\xi )^{-\\\\alpha }\\\\)</span>, <span>\\\\(k_{f} >0\\\\)</span>, describes gradient-dependent limitation of cross diffusion fluxes. Under suitable conditions on the data, we prove that the solution is global in time. If <span>\\\\(N\\\\geq 3\\\\)</span>, under conditions on <span>\\\\(f\\\\)</span>, <span>\\\\(g\\\\)</span> and initial data, we prove that if the solution <span>\\\\(u(x,t)\\\\)</span> blows up in <span>\\\\(L^{\\\\infty }\\\\)</span>-norm at finite time <span>\\\\(T_{max}\\\\)</span> then for some <span>\\\\(p>1\\\\)</span> it blows up also in <span>\\\\(L^{p}\\\\)</span>-norm. Moreover a lower bound of blow-up time is derived.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00699-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00699-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑以下抛物线-椭圆交叉扩散系统的径向对称解 $$ \left \{ \textstyle\begin{array}{l}\u_{t} = \Delta u - \nabla (u f(|\nabla v|^{2} )\nabla v), \&0= \Delta v -\mu (t)+ g(u), \quad \mu (t)= \frac{1}{|\Omega |}\int _{\Omega } g(u(\cdot , t))dx \ &u(x,0)= u_{0}(x), \end{aligned}\end{array}\displaystyle\right .$$ in \(\Omega \times (0,\infty )\), with \(\Omega \) a ball in \(\mathbb{R}^{N}\), \(N\geq 1\) under homogeneous Neumann boundary conditions、\g(u)a regular function with the prototype \(g(u)= u^{k}\), \(u\geq 0\), \(k>;0\).函数(f(\xi ) = k_{f} (1+ \xi )^{-\alpha }\), (k_{f} >0\)描述了交叉扩散通量的梯度依赖限制。在数据的适当条件下,我们证明了该解在时间上是全局的。如果 \(N\geq 3\), 在 \(f\), \(g\) 和初始数据的条件下,我们证明如果解 \(u(x,t)\) 在有限的时间 \(T_{max}\) 在 \(L^{\infty })-norm中炸毁,那么对于某些 \(p>1\) 它也在\(L^{p}\)-norm中炸毁。此外,还得出了炸毁时间的下限。
in \(\Omega \times (0,\infty )\), with \(\Omega \) a ball in \(\mathbb{R}^{N}\), \(N\geq 1\) under homogeneous Neumann boundary conditions, \(g(u)\) a regular function with the prototype \(g(u)= u^{k}\), \(u\geq 0\), \(k>0\). The function \(f(\xi ) = k_{f} (1+ \xi )^{-\alpha }\), \(k_{f} >0\), describes gradient-dependent limitation of cross diffusion fluxes. Under suitable conditions on the data, we prove that the solution is global in time. If \(N\geq 3\), under conditions on \(f\), \(g\) and initial data, we prove that if the solution \(u(x,t)\) blows up in \(L^{\infty }\)-norm at finite time \(T_{max}\) then for some \(p>1\) it blows up also in \(L^{p}\)-norm. Moreover a lower bound of blow-up time is derived.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.