具有通量限制和非线性信号产生的趋化系统溶液的定性行为

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
M. Marras, Y. Chiyo
{"title":"具有通量限制和非线性信号产生的趋化系统溶液的定性行为","authors":"M. Marras,&nbsp;Y. Chiyo","doi":"10.1007/s10440-024-00699-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider radially symmetric solutions of the following parabolic-elliptic cross-diffusion system </p><div><div><span>$$ \\left \\{ \\textstyle\\begin{array}{l} \\begin{aligned} &amp;u_{t} = \\Delta u - \\nabla (u f(|\\nabla v|^{2} )\\nabla v), \\\\ &amp;0= \\Delta v -\\mu (t)+ g(u), \\quad \\mu (t)= \\frac{1}{|\\Omega |} \\int _{\\Omega } g(u(\\cdot , t))dx \\\\ &amp;u(x,0)= u_{0}(x), \\end{aligned} \\end{array}\\displaystyle \\right . $$</span></div></div><p> in <span>\\(\\Omega \\times (0,\\infty )\\)</span>, with <span>\\(\\Omega \\)</span> a ball in <span>\\(\\mathbb{R}^{N}\\)</span>, <span>\\(N\\geq 1\\)</span> under homogeneous Neumann boundary conditions, <span>\\(g(u)\\)</span> a regular function with the prototype <span>\\(g(u)= u^{k}\\)</span>, <span>\\(u\\geq 0\\)</span>, <span>\\(k&gt;0\\)</span>. The function <span>\\(f(\\xi ) = k_{f} (1+ \\xi )^{-\\alpha }\\)</span>, <span>\\(k_{f} &gt;0\\)</span>, describes gradient-dependent limitation of cross diffusion fluxes. Under suitable conditions on the data, we prove that the solution is global in time. If <span>\\(N\\geq 3\\)</span>, under conditions on <span>\\(f\\)</span>, <span>\\(g\\)</span> and initial data, we prove that if the solution <span>\\(u(x,t)\\)</span> blows up in <span>\\(L^{\\infty }\\)</span>-norm at finite time <span>\\(T_{max}\\)</span> then for some <span>\\(p&gt;1\\)</span> it blows up also in <span>\\(L^{p}\\)</span>-norm. Moreover a lower bound of blow-up time is derived.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"194 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative Behavior of Solutions of a Chemotaxis System with Flux Limitation and Nonlinear Signal Production\",\"authors\":\"M. Marras,&nbsp;Y. Chiyo\",\"doi\":\"10.1007/s10440-024-00699-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider radially symmetric solutions of the following parabolic-elliptic cross-diffusion system </p><div><div><span>$$ \\\\left \\\\{ \\\\textstyle\\\\begin{array}{l} \\\\begin{aligned} &amp;u_{t} = \\\\Delta u - \\\\nabla (u f(|\\\\nabla v|^{2} )\\\\nabla v), \\\\\\\\ &amp;0= \\\\Delta v -\\\\mu (t)+ g(u), \\\\quad \\\\mu (t)= \\\\frac{1}{|\\\\Omega |} \\\\int _{\\\\Omega } g(u(\\\\cdot , t))dx \\\\\\\\ &amp;u(x,0)= u_{0}(x), \\\\end{aligned} \\\\end{array}\\\\displaystyle \\\\right . $$</span></div></div><p> in <span>\\\\(\\\\Omega \\\\times (0,\\\\infty )\\\\)</span>, with <span>\\\\(\\\\Omega \\\\)</span> a ball in <span>\\\\(\\\\mathbb{R}^{N}\\\\)</span>, <span>\\\\(N\\\\geq 1\\\\)</span> under homogeneous Neumann boundary conditions, <span>\\\\(g(u)\\\\)</span> a regular function with the prototype <span>\\\\(g(u)= u^{k}\\\\)</span>, <span>\\\\(u\\\\geq 0\\\\)</span>, <span>\\\\(k&gt;0\\\\)</span>. The function <span>\\\\(f(\\\\xi ) = k_{f} (1+ \\\\xi )^{-\\\\alpha }\\\\)</span>, <span>\\\\(k_{f} &gt;0\\\\)</span>, describes gradient-dependent limitation of cross diffusion fluxes. Under suitable conditions on the data, we prove that the solution is global in time. If <span>\\\\(N\\\\geq 3\\\\)</span>, under conditions on <span>\\\\(f\\\\)</span>, <span>\\\\(g\\\\)</span> and initial data, we prove that if the solution <span>\\\\(u(x,t)\\\\)</span> blows up in <span>\\\\(L^{\\\\infty }\\\\)</span>-norm at finite time <span>\\\\(T_{max}\\\\)</span> then for some <span>\\\\(p&gt;1\\\\)</span> it blows up also in <span>\\\\(L^{p}\\\\)</span>-norm. Moreover a lower bound of blow-up time is derived.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00699-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00699-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑以下抛物线-椭圆交叉扩散系统的径向对称解 $$ \left \{ \textstyle\begin{array}{l}\u_{t} = \Delta u - \nabla (u f(|\nabla v|^{2} )\nabla v), \&0= \Delta v -\mu (t)+ g(u), \quad \mu (t)= \frac{1}{|\Omega |}\int _{\Omega } g(u(\cdot , t))dx \ &u(x,0)= u_{0}(x), \end{aligned}\end{array}\displaystyle\right .$$ in \(\Omega \times (0,\infty )\), with \(\Omega \) a ball in \(\mathbb{R}^{N}\), \(N\geq 1\) under homogeneous Neumann boundary conditions、\g(u)a regular function with the prototype \(g(u)= u^{k}\), \(u\geq 0\), \(k>;0\).函数(f(\xi ) = k_{f} (1+ \xi )^{-\alpha }\), (k_{f} >0\)描述了交叉扩散通量的梯度依赖限制。在数据的适当条件下,我们证明了该解在时间上是全局的。如果 \(N\geq 3\), 在 \(f\), \(g\) 和初始数据的条件下,我们证明如果解 \(u(x,t)\) 在有限的时间 \(T_{max}\) 在 \(L^{\infty })-norm中炸毁,那么对于某些 \(p>1\) 它也在\(L^{p}\)-norm中炸毁。此外,还得出了炸毁时间的下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative Behavior of Solutions of a Chemotaxis System with Flux Limitation and Nonlinear Signal Production

In this paper we consider radially symmetric solutions of the following parabolic-elliptic cross-diffusion system

$$ \left \{ \textstyle\begin{array}{l} \begin{aligned} &u_{t} = \Delta u - \nabla (u f(|\nabla v|^{2} )\nabla v), \\ &0= \Delta v -\mu (t)+ g(u), \quad \mu (t)= \frac{1}{|\Omega |} \int _{\Omega } g(u(\cdot , t))dx \\ &u(x,0)= u_{0}(x), \end{aligned} \end{array}\displaystyle \right . $$

in \(\Omega \times (0,\infty )\), with \(\Omega \) a ball in \(\mathbb{R}^{N}\), \(N\geq 1\) under homogeneous Neumann boundary conditions, \(g(u)\) a regular function with the prototype \(g(u)= u^{k}\), \(u\geq 0\), \(k>0\). The function \(f(\xi ) = k_{f} (1+ \xi )^{-\alpha }\), \(k_{f} >0\), describes gradient-dependent limitation of cross diffusion fluxes. Under suitable conditions on the data, we prove that the solution is global in time. If \(N\geq 3\), under conditions on \(f\), \(g\) and initial data, we prove that if the solution \(u(x,t)\) blows up in \(L^{\infty }\)-norm at finite time \(T_{max}\) then for some \(p>1\) it blows up also in \(L^{p}\)-norm. Moreover a lower bound of blow-up time is derived.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信