Ting-Hao Liu, Shuai Fu, Jin-Tao Gou, Yin-Sheng Zhang, Chang-Wei Hu and Hua-Qing Yang
{"title":"单原子铂催化的 Nb2O5 氧空位和路易斯酸性对 5-羟甲基糠醛优先羟甲基氢解的协同促进作用","authors":"Ting-Hao Liu, Shuai Fu, Jin-Tao Gou, Yin-Sheng Zhang, Chang-Wei Hu and Hua-Qing Yang","doi":"10.1039/D4CY00559G","DOIUrl":null,"url":null,"abstract":"<p >Pt<small><sub>1</sub></small>/Nb<small><sub>2</sub></small>O<small><sub>5</sub></small> exhibits good catalytic performance towards the hydrogenolysis/hydrogenation of HMF. However, the chemical nature that affects its activity and selectivity is not yet clear at the molecular level. For Pt<small><sub>1</sub></small>/Nb<small><sub>2</sub></small>O<small><sub>5</sub></small>, two kinds of Pt-containing active sites are modelled, <em>i.e.</em>, [–(NbO)PtNb(ONb)<small><sub>5</sub></small>–] ([OPtNb]) in the absence of oxygen vacancy, and [–(NbO)PtNb(ONb)<small><sub>4</sub></small>–] ([OPtNb-O<small><sub>v</sub></small>]) in the presence of oxygen vacancy. Over both [OPtNb-O<small><sub>v</sub></small>] and [OPtNb], the catalytic mechanism for hydrogenolysis/hydrogenation of 5-hydroxymethylfurfural (HMF) with H<small><sub>2</sub></small> as an H-source has been theoretically investigated in tetrahydrofuran solution at the GGA-PBE/DNP level. The hydrogenolysis of –CH<small><sub>2</sub></small>OH (hydroxymethyl) groups to –CH<small><sub>3</sub></small> groups is predominated with the cleavage of –CH<small><sub>2</sub></small>–OH bonds as the rate-determining step, whereas the hydrogenation of –CHO (aldehyde) groups to –CH<small><sub>2</sub></small>OH groups is very minor with the addition of –CHO groups as the rate-determining step. Here, 5-methylfurfural (5-MF) is predominant, whereas 2,5-dihydroxymethylfuran (DHMF) is very minor. The strong Lewis acidity of Nb<small><sub>2</sub></small>O<small><sub>5</sub></small> promotes the Pt-site to accept the lone pair electrons of the oxygen atom, in which the oxygen atom of the –CH<small><sub>2</sub></small>OH group is more prone than that of the –CHO group to donate its lone pair electrons to the Pt-site. Thus, Pt<small><sub>1</sub></small>/Nb<small><sub>2</sub></small>O<small><sub>5</sub></small> facilitates the hydrogenolysis of the –CH<small><sub>2</sub></small>OH group and relatively inhibits the hydrogenation of the –CHO group. Compared with [OPtNb], [OPtNb-O<small><sub>v</sub></small>] displays higher catalytic activity. This stems from the promoting effect of oxygen vacancy on the capacity of the Pt-site to receive lone pair electrons of the oxygen atom in the –CH<small><sub>2</sub></small>OH group.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 22","pages":" 6550-6560"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic promotion of oxygen vacancy and Lewis acidity of Nb2O5 on the preferential hydroxymethyl hydrogenolysis of 5-hydroxymethylfurfural catalyzed by single atom Pt†\",\"authors\":\"Ting-Hao Liu, Shuai Fu, Jin-Tao Gou, Yin-Sheng Zhang, Chang-Wei Hu and Hua-Qing Yang\",\"doi\":\"10.1039/D4CY00559G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Pt<small><sub>1</sub></small>/Nb<small><sub>2</sub></small>O<small><sub>5</sub></small> exhibits good catalytic performance towards the hydrogenolysis/hydrogenation of HMF. However, the chemical nature that affects its activity and selectivity is not yet clear at the molecular level. For Pt<small><sub>1</sub></small>/Nb<small><sub>2</sub></small>O<small><sub>5</sub></small>, two kinds of Pt-containing active sites are modelled, <em>i.e.</em>, [–(NbO)PtNb(ONb)<small><sub>5</sub></small>–] ([OPtNb]) in the absence of oxygen vacancy, and [–(NbO)PtNb(ONb)<small><sub>4</sub></small>–] ([OPtNb-O<small><sub>v</sub></small>]) in the presence of oxygen vacancy. Over both [OPtNb-O<small><sub>v</sub></small>] and [OPtNb], the catalytic mechanism for hydrogenolysis/hydrogenation of 5-hydroxymethylfurfural (HMF) with H<small><sub>2</sub></small> as an H-source has been theoretically investigated in tetrahydrofuran solution at the GGA-PBE/DNP level. The hydrogenolysis of –CH<small><sub>2</sub></small>OH (hydroxymethyl) groups to –CH<small><sub>3</sub></small> groups is predominated with the cleavage of –CH<small><sub>2</sub></small>–OH bonds as the rate-determining step, whereas the hydrogenation of –CHO (aldehyde) groups to –CH<small><sub>2</sub></small>OH groups is very minor with the addition of –CHO groups as the rate-determining step. Here, 5-methylfurfural (5-MF) is predominant, whereas 2,5-dihydroxymethylfuran (DHMF) is very minor. The strong Lewis acidity of Nb<small><sub>2</sub></small>O<small><sub>5</sub></small> promotes the Pt-site to accept the lone pair electrons of the oxygen atom, in which the oxygen atom of the –CH<small><sub>2</sub></small>OH group is more prone than that of the –CHO group to donate its lone pair electrons to the Pt-site. Thus, Pt<small><sub>1</sub></small>/Nb<small><sub>2</sub></small>O<small><sub>5</sub></small> facilitates the hydrogenolysis of the –CH<small><sub>2</sub></small>OH group and relatively inhibits the hydrogenation of the –CHO group. Compared with [OPtNb], [OPtNb-O<small><sub>v</sub></small>] displays higher catalytic activity. This stems from the promoting effect of oxygen vacancy on the capacity of the Pt-site to receive lone pair electrons of the oxygen atom in the –CH<small><sub>2</sub></small>OH group.</p>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\" 22\",\"pages\":\" 6550-6560\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00559g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00559g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Synergistic promotion of oxygen vacancy and Lewis acidity of Nb2O5 on the preferential hydroxymethyl hydrogenolysis of 5-hydroxymethylfurfural catalyzed by single atom Pt†
Pt1/Nb2O5 exhibits good catalytic performance towards the hydrogenolysis/hydrogenation of HMF. However, the chemical nature that affects its activity and selectivity is not yet clear at the molecular level. For Pt1/Nb2O5, two kinds of Pt-containing active sites are modelled, i.e., [–(NbO)PtNb(ONb)5–] ([OPtNb]) in the absence of oxygen vacancy, and [–(NbO)PtNb(ONb)4–] ([OPtNb-Ov]) in the presence of oxygen vacancy. Over both [OPtNb-Ov] and [OPtNb], the catalytic mechanism for hydrogenolysis/hydrogenation of 5-hydroxymethylfurfural (HMF) with H2 as an H-source has been theoretically investigated in tetrahydrofuran solution at the GGA-PBE/DNP level. The hydrogenolysis of –CH2OH (hydroxymethyl) groups to –CH3 groups is predominated with the cleavage of –CH2–OH bonds as the rate-determining step, whereas the hydrogenation of –CHO (aldehyde) groups to –CH2OH groups is very minor with the addition of –CHO groups as the rate-determining step. Here, 5-methylfurfural (5-MF) is predominant, whereas 2,5-dihydroxymethylfuran (DHMF) is very minor. The strong Lewis acidity of Nb2O5 promotes the Pt-site to accept the lone pair electrons of the oxygen atom, in which the oxygen atom of the –CH2OH group is more prone than that of the –CHO group to donate its lone pair electrons to the Pt-site. Thus, Pt1/Nb2O5 facilitates the hydrogenolysis of the –CH2OH group and relatively inhibits the hydrogenation of the –CHO group. Compared with [OPtNb], [OPtNb-Ov] displays higher catalytic activity. This stems from the promoting effect of oxygen vacancy on the capacity of the Pt-site to receive lone pair electrons of the oxygen atom in the –CH2OH group.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days