通过氧卤化铋/富铋光催化剂固溶体增强光驱动的光催化反应:系统综述

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Robert O. Gembo, Rudzani Ratshiedana, Lawrence M. Madikizela, Ilunga Kamika, Cecil K. King'ondu, Alex T. Kuvarega and Titus A. M. Msagati
{"title":"通过氧卤化铋/富铋光催化剂固溶体增强光驱动的光催化反应:系统综述","authors":"Robert O. Gembo, Rudzani Ratshiedana, Lawrence M. Madikizela, Ilunga Kamika, Cecil K. King'ondu, Alex T. Kuvarega and Titus A. M. Msagati","doi":"10.1039/D4CY00820K","DOIUrl":null,"url":null,"abstract":"<p >The pursuit of sustainable environmental remediation strategies has led to intensive research in photocatalysis. Photocatalysts are a class of compounds with exceptional properties, making them suitable for various applications in environmental remediation. They are effective against multiple organic and inorganic pollutants and are also used as semiconductors for green energy production. Among the various photocatalytic semiconductor materials explored, bismuth oxyhalide (BiOY, Y = F, Cl, Br, or I) and bismuth-rich (Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small>, Y = F, Cl, Br, or I) are particularly notable. However, unmodified/pristine BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> exhibit inherent limitations of low photocatalytic performance owing to unsuitable band gaps and low efficiency in separating carriers. Hence, this review outlines the BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> structures, wherein modifiable halogen layers may offer favorable conditions for creating solid solutions with improved intrinsic properties and catalytic performance. This systematic review also explores the unique attributes and challenges associated with tuning the photocatalytic performance of BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> solid solutions to enhance solar-driven reactions. The distinctive feature of this review lies in the versatile nature of the BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> solid solution materials. These materials offer the advantage of harnessing a broad light spectrum, including solar and UV radiation. This review further explores the strategies and techniques employed to optimize BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> photocatalysts by forming solid solution and their application in water treatment processes. Furthermore, it highlights the ongoing challenges and opportunities in developing high-performance BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> solid solution photocatalysts, illustrating their potential to drive a more sustainable and energy-efficient future through enhanced light-driven reactions.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 22","pages":" 6466-6495"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00820k?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhancing light-driven photocatalytic reactions through solid solutions of bismuth oxyhalide/bismuth rich photocatalysts: a systematic review\",\"authors\":\"Robert O. Gembo, Rudzani Ratshiedana, Lawrence M. Madikizela, Ilunga Kamika, Cecil K. King'ondu, Alex T. Kuvarega and Titus A. M. Msagati\",\"doi\":\"10.1039/D4CY00820K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The pursuit of sustainable environmental remediation strategies has led to intensive research in photocatalysis. Photocatalysts are a class of compounds with exceptional properties, making them suitable for various applications in environmental remediation. They are effective against multiple organic and inorganic pollutants and are also used as semiconductors for green energy production. Among the various photocatalytic semiconductor materials explored, bismuth oxyhalide (BiOY, Y = F, Cl, Br, or I) and bismuth-rich (Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small>, Y = F, Cl, Br, or I) are particularly notable. However, unmodified/pristine BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> exhibit inherent limitations of low photocatalytic performance owing to unsuitable band gaps and low efficiency in separating carriers. Hence, this review outlines the BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> structures, wherein modifiable halogen layers may offer favorable conditions for creating solid solutions with improved intrinsic properties and catalytic performance. This systematic review also explores the unique attributes and challenges associated with tuning the photocatalytic performance of BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> solid solutions to enhance solar-driven reactions. The distinctive feature of this review lies in the versatile nature of the BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> solid solution materials. These materials offer the advantage of harnessing a broad light spectrum, including solar and UV radiation. This review further explores the strategies and techniques employed to optimize BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> photocatalysts by forming solid solution and their application in water treatment processes. Furthermore, it highlights the ongoing challenges and opportunities in developing high-performance BiOY and Bi<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>Y<small><sub><em>z</em></sub></small> solid solution photocatalysts, illustrating their potential to drive a more sustainable and energy-efficient future through enhanced light-driven reactions.</p>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\" 22\",\"pages\":\" 6466-6495\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00820k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00820k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00820k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对可持续环境修复战略的追求促使人们对光催化技术进行深入研究。光催化剂是一类具有特殊性能的化合物,因此适用于环境修复领域的各种应用。它们能有效地去除多种有机和无机污染物,还可用作生产绿色能源的半导体。在各种光催化半导体材料中,氧卤化铋(BiOY,Y = F、Cl、Br 或 I)和富铋(BixOyYz,Y = F、Cl、Br 或 I)尤其引人注目。然而,未经改性/原始的 BiOY 和 BixOyYz 具有固有的局限性,即光催化性能低,原因是它们的带隙不合适,分离载流子的效率低。因此,本综述概述了 BiOY 和 BixOyYz 结构,其中可修饰的卤素层可为创造具有更佳内在特性和催化性能的固体溶液提供有利条件。本系统综述还探讨了与调整 BiOY 和 BixOyYz 固体溶液的光催化性能以增强太阳能驱动反应相关的独特属性和挑战。本综述的显著特点在于 BiOY 和 BixOyYz 固溶体材料的多功能性。这些材料具有利用包括太阳能和紫外线辐射在内的宽光谱的优势。本综述进一步探讨了通过形成固溶体来优化 BiOY 和 BixOyYz 光催化剂的策略和技术,以及它们在水处理工艺中的应用。此外,该综述还强调了开发高性能 BiOY 和 BixOyYz 固溶体光催化剂所面临的挑战和机遇,并说明了它们通过增强光驱动反应来推动更具可持续性和能效的未来的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing light-driven photocatalytic reactions through solid solutions of bismuth oxyhalide/bismuth rich photocatalysts: a systematic review

Enhancing light-driven photocatalytic reactions through solid solutions of bismuth oxyhalide/bismuth rich photocatalysts: a systematic review

The pursuit of sustainable environmental remediation strategies has led to intensive research in photocatalysis. Photocatalysts are a class of compounds with exceptional properties, making them suitable for various applications in environmental remediation. They are effective against multiple organic and inorganic pollutants and are also used as semiconductors for green energy production. Among the various photocatalytic semiconductor materials explored, bismuth oxyhalide (BiOY, Y = F, Cl, Br, or I) and bismuth-rich (BixOyYz, Y = F, Cl, Br, or I) are particularly notable. However, unmodified/pristine BiOY and BixOyYz exhibit inherent limitations of low photocatalytic performance owing to unsuitable band gaps and low efficiency in separating carriers. Hence, this review outlines the BiOY and BixOyYz structures, wherein modifiable halogen layers may offer favorable conditions for creating solid solutions with improved intrinsic properties and catalytic performance. This systematic review also explores the unique attributes and challenges associated with tuning the photocatalytic performance of BiOY and BixOyYz solid solutions to enhance solar-driven reactions. The distinctive feature of this review lies in the versatile nature of the BiOY and BixOyYz solid solution materials. These materials offer the advantage of harnessing a broad light spectrum, including solar and UV radiation. This review further explores the strategies and techniques employed to optimize BiOY and BixOyYz photocatalysts by forming solid solution and their application in water treatment processes. Furthermore, it highlights the ongoing challenges and opportunities in developing high-performance BiOY and BixOyYz solid solution photocatalysts, illustrating their potential to drive a more sustainable and energy-efficient future through enhanced light-driven reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信