IAMSAM:基于图像的分子特征分析,使用分段 Anything 模型

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dongjoo Lee, Jeongbin Park, Seungho Cook, Seongjin Yoo, Daeseung Lee, Hongyoon Choi
{"title":"IAMSAM:基于图像的分子特征分析,使用分段 Anything 模型","authors":"Dongjoo Lee, Jeongbin Park, Seungho Cook, Seongjin Yoo, Daeseung Lee, Hongyoon Choi","doi":"10.1186/s13059-024-03380-x","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics is a cutting-edge technique that combines gene expression with spatial information, allowing researchers to study molecular patterns within tissue architecture. Here, we present IAMSAM, a user-friendly web-based tool for analyzing spatial transcriptomics data focusing on morphological features. IAMSAM accurately segments tissue images using the Segment Anything Model, allowing for the semi-automatic selection of regions of interest based on morphological signatures. Furthermore, IAMSAM provides downstream analysis, such as identifying differentially expressed genes, enrichment analysis, and cell type prediction within the selected regions. With its simple interface, IAMSAM empowers researchers to explore and interpret heterogeneous tissues in a streamlined manner.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"409 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IAMSAM: image-based analysis of molecular signatures using the Segment Anything Model\",\"authors\":\"Dongjoo Lee, Jeongbin Park, Seungho Cook, Seongjin Yoo, Daeseung Lee, Hongyoon Choi\",\"doi\":\"10.1186/s13059-024-03380-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial transcriptomics is a cutting-edge technique that combines gene expression with spatial information, allowing researchers to study molecular patterns within tissue architecture. Here, we present IAMSAM, a user-friendly web-based tool for analyzing spatial transcriptomics data focusing on morphological features. IAMSAM accurately segments tissue images using the Segment Anything Model, allowing for the semi-automatic selection of regions of interest based on morphological signatures. Furthermore, IAMSAM provides downstream analysis, such as identifying differentially expressed genes, enrichment analysis, and cell type prediction within the selected regions. With its simple interface, IAMSAM empowers researchers to explore and interpret heterogeneous tissues in a streamlined manner.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"409 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03380-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03380-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学是一种将基因表达与空间信息相结合的前沿技术,使研究人员能够研究组织结构中的分子模式。在这里,我们介绍 IAMSAM,这是一种基于网络的用户友好型工具,用于分析以形态特征为重点的空间转录组学数据。IAMSAM 利用 "任意分割模型"(Segment Anything Model)对组织图像进行精确分割,可根据形态特征半自动选择感兴趣的区域。此外,IAMSAM 还提供下游分析功能,如在选定区域内识别差异表达基因、富集分析和细胞类型预测。通过简单的界面,IAMSAM 使研究人员能够以简化的方式探索和解释异质组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IAMSAM: image-based analysis of molecular signatures using the Segment Anything Model
Spatial transcriptomics is a cutting-edge technique that combines gene expression with spatial information, allowing researchers to study molecular patterns within tissue architecture. Here, we present IAMSAM, a user-friendly web-based tool for analyzing spatial transcriptomics data focusing on morphological features. IAMSAM accurately segments tissue images using the Segment Anything Model, allowing for the semi-automatic selection of regions of interest based on morphological signatures. Furthermore, IAMSAM provides downstream analysis, such as identifying differentially expressed genes, enrichment analysis, and cell type prediction within the selected regions. With its simple interface, IAMSAM empowers researchers to explore and interpret heterogeneous tissues in a streamlined manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信