M. Dorsch, C. S. Jeffery, A. Philip Monai, C. A. Tout, E. J. Snowdon, I. Monageng, L. J. A. Scott, B. Miszalski, V. M. Woolf
{"title":"利用 SALT 发现三颗富磁氦热亚矮星","authors":"M. Dorsch, C. S. Jeffery, A. Philip Monai, C. A. Tout, E. J. Snowdon, I. Monageng, L. J. A. Scott, B. Miszalski, V. M. Woolf","doi":"10.1051/0004-6361/202451306","DOIUrl":null,"url":null,"abstract":"Magnetic fields with strengths ranging from 300 to 500 kG have recently been discovered in a group of four extremely similar helium-rich hot subdwarf (He-sdO) stars. In addition to their strong magnetic fields, these He-sdO stars are characterised by common atmospheric parameters, clustering around <i>T<i/><sub>eff<sub/> = 46 500 K, a log <i>ɡ<i/>/cm s<sup>−1<sup/> close to 6, and intermediate helium abundances. Here we present the discovery of three additional magnetic hot subdwarfs, J123359.44–674929.11, J125611.42-575333.45, and J144405.79–674400.93. These stars are again almost identical in terms of atmospheric parameters, but, at <i>B<i/> ≈ 200 kG, their magnetic fields are somewhat weaker than those previously known. The close similarity of all known He-sdOs implies a finely tuned formation channel. We propose the merging of a He white dwarf with a H+He white dwarf. A differential rotation at the merger interface may initiate a toroidal magnetic field that evolves via a magnetic dynamo to produce a poloidal field. This field is either directly visible at the surface or might diffuse towards the surface if initially buried. We further discuss a broad absorption line centred at about 4630 Å that is common to all magnetic He-sdOs. This feature may not be related to the magnetic field but instead to the intermediate helium abundances in these He-sdO stars, allowing the strong He II 4686 Å line to be perturbed by collisions with hydrogen atoms.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"54 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of three magnetic helium-rich hot subdwarfs with SALT\",\"authors\":\"M. Dorsch, C. S. Jeffery, A. Philip Monai, C. A. Tout, E. J. Snowdon, I. Monageng, L. J. A. Scott, B. Miszalski, V. M. Woolf\",\"doi\":\"10.1051/0004-6361/202451306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic fields with strengths ranging from 300 to 500 kG have recently been discovered in a group of four extremely similar helium-rich hot subdwarf (He-sdO) stars. In addition to their strong magnetic fields, these He-sdO stars are characterised by common atmospheric parameters, clustering around <i>T<i/><sub>eff<sub/> = 46 500 K, a log <i>ɡ<i/>/cm s<sup>−1<sup/> close to 6, and intermediate helium abundances. Here we present the discovery of three additional magnetic hot subdwarfs, J123359.44–674929.11, J125611.42-575333.45, and J144405.79–674400.93. These stars are again almost identical in terms of atmospheric parameters, but, at <i>B<i/> ≈ 200 kG, their magnetic fields are somewhat weaker than those previously known. The close similarity of all known He-sdOs implies a finely tuned formation channel. We propose the merging of a He white dwarf with a H+He white dwarf. A differential rotation at the merger interface may initiate a toroidal magnetic field that evolves via a magnetic dynamo to produce a poloidal field. This field is either directly visible at the surface or might diffuse towards the surface if initially buried. We further discuss a broad absorption line centred at about 4630 Å that is common to all magnetic He-sdOs. This feature may not be related to the magnetic field but instead to the intermediate helium abundances in these He-sdO stars, allowing the strong He II 4686 Å line to be perturbed by collisions with hydrogen atoms.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202451306\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451306","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
最近在一组由四颗极其相似的富氦热亚矮星(He-sdO)组成的恒星中发现了强度在300到500 kG之间的磁场。除了强磁场之外,这些He-sdO恒星还具有共同的大气参数:聚集在Teff = 46 500 K附近,log ɡ/cm s-1接近6,以及中等的氦丰度。在这里,我们又发现了三颗磁热亚矮星:J123359.44-674929.11、J125611.42-575333.45 和 J144405.79-674400.93。这些恒星的大气参数也几乎相同,但是在B ≈ 200 kG时,它们的磁场比以前已知的要弱一些。所有已知的氦-∑Os 都非常相似,这意味着它们的形成渠道经过了微调。我们提出了 He 白矮星与 H+He 白矮星合并的设想。合并界面上的差分旋转可能会引发环形磁场,通过磁动力演变产生极性磁场。这个磁场或者在表面直接可见,或者在最初被掩埋时向表面扩散。我们进一步讨论了以大约 4630 Å 为中心的宽吸收线,这是所有磁性 He-sdO 的共同特征。这一特征可能与磁场无关,而是与这些 He-sdO 恒星中的中等氦丰度有关,使得强 He II 4686 Å 线受到与氢原子碰撞的扰动。
Discovery of three magnetic helium-rich hot subdwarfs with SALT
Magnetic fields with strengths ranging from 300 to 500 kG have recently been discovered in a group of four extremely similar helium-rich hot subdwarf (He-sdO) stars. In addition to their strong magnetic fields, these He-sdO stars are characterised by common atmospheric parameters, clustering around Teff = 46 500 K, a log ɡ/cm s−1 close to 6, and intermediate helium abundances. Here we present the discovery of three additional magnetic hot subdwarfs, J123359.44–674929.11, J125611.42-575333.45, and J144405.79–674400.93. These stars are again almost identical in terms of atmospheric parameters, but, at B ≈ 200 kG, their magnetic fields are somewhat weaker than those previously known. The close similarity of all known He-sdOs implies a finely tuned formation channel. We propose the merging of a He white dwarf with a H+He white dwarf. A differential rotation at the merger interface may initiate a toroidal magnetic field that evolves via a magnetic dynamo to produce a poloidal field. This field is either directly visible at the surface or might diffuse towards the surface if initially buried. We further discuss a broad absorption line centred at about 4630 Å that is common to all magnetic He-sdOs. This feature may not be related to the magnetic field but instead to the intermediate helium abundances in these He-sdO stars, allowing the strong He II 4686 Å line to be perturbed by collisions with hydrogen atoms.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.