Lan-Huong Nguyen;Van-Linh Nguyen;Ren-Hung Hwang;Jian-Jhih Kuo;Yu-Wen Chen;Chien-Chung Huang;Ping-I Pan
{"title":"迈向安全的智能电网 2.0:探索安全威胁、保护模式和挑战","authors":"Lan-Huong Nguyen;Van-Linh Nguyen;Ren-Hung Hwang;Jian-Jhih Kuo;Yu-Wen Chen;Chien-Chung Huang;Ping-I Pan","doi":"10.1109/COMST.2024.3493630","DOIUrl":null,"url":null,"abstract":"Many nations are promoting the green transition in the energy sector to attain neutral carbon emissions by 2050. Smart Grid 2.0 (SG2) is expected to explore data-driven analytics and enhance communication technologies to improve the efficiency and sustainability of distributed renewable energy systems. These features are beyond smart metering and electric surplus distribution in conventional smart grids. Given the high dependence on communication networks to connect distributed microgrids in SG2, potential cascading failures of connectivity can cause disruption to data synchronization to the remote control systems. This paper reviews security threats and defense tactics for three stakeholders: power grid operators, communication network providers, and consumers. Through the survey, we found that SG2‘s stakeholders are particularly vulnerable to substation attacks/vandalism, malware/ransomware threats, blockchain vulnerabilities and supply chain breakdowns. Furthermore, incorporating artificial intelligence (AI) into autonomous energy management in distributed energy resources of SG2 creates new challenges. Accordingly, adversarial samples and false data injection on electricity reading and measurement sensors at power plants can fool AI-powered control functions and cause messy error-checking operations in energy storage, wrong energy estimation in electric vehicle charging, and even fraudulent transactions in peer-to-peer energy trading models. Scalable blockchain-based models, physical unclonable function, interoperable security protocols, and trustworthy AI models designed for managing distributed microgrids in SG2 are typical promising protection models for future research.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"27 4","pages":"2581-2620"},"PeriodicalIF":34.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Secured Smart Grid 2.0: Exploring Security Threats, Protection Models, and Challenges\",\"authors\":\"Lan-Huong Nguyen;Van-Linh Nguyen;Ren-Hung Hwang;Jian-Jhih Kuo;Yu-Wen Chen;Chien-Chung Huang;Ping-I Pan\",\"doi\":\"10.1109/COMST.2024.3493630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many nations are promoting the green transition in the energy sector to attain neutral carbon emissions by 2050. Smart Grid 2.0 (SG2) is expected to explore data-driven analytics and enhance communication technologies to improve the efficiency and sustainability of distributed renewable energy systems. These features are beyond smart metering and electric surplus distribution in conventional smart grids. Given the high dependence on communication networks to connect distributed microgrids in SG2, potential cascading failures of connectivity can cause disruption to data synchronization to the remote control systems. This paper reviews security threats and defense tactics for three stakeholders: power grid operators, communication network providers, and consumers. Through the survey, we found that SG2‘s stakeholders are particularly vulnerable to substation attacks/vandalism, malware/ransomware threats, blockchain vulnerabilities and supply chain breakdowns. Furthermore, incorporating artificial intelligence (AI) into autonomous energy management in distributed energy resources of SG2 creates new challenges. Accordingly, adversarial samples and false data injection on electricity reading and measurement sensors at power plants can fool AI-powered control functions and cause messy error-checking operations in energy storage, wrong energy estimation in electric vehicle charging, and even fraudulent transactions in peer-to-peer energy trading models. Scalable blockchain-based models, physical unclonable function, interoperable security protocols, and trustworthy AI models designed for managing distributed microgrids in SG2 are typical promising protection models for future research.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"27 4\",\"pages\":\"2581-2620\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10746402/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10746402/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Many nations are promoting the green transition in the energy sector to attain neutral carbon emissions by 2050. Smart Grid 2.0 (SG2) is expected to explore data-driven analytics and enhance communication technologies to improve the efficiency and sustainability of distributed renewable energy systems. These features are beyond smart metering and electric surplus distribution in conventional smart grids. Given the high dependence on communication networks to connect distributed microgrids in SG2, potential cascading failures of connectivity can cause disruption to data synchronization to the remote control systems. This paper reviews security threats and defense tactics for three stakeholders: power grid operators, communication network providers, and consumers. Through the survey, we found that SG2‘s stakeholders are particularly vulnerable to substation attacks/vandalism, malware/ransomware threats, blockchain vulnerabilities and supply chain breakdowns. Furthermore, incorporating artificial intelligence (AI) into autonomous energy management in distributed energy resources of SG2 creates new challenges. Accordingly, adversarial samples and false data injection on electricity reading and measurement sensors at power plants can fool AI-powered control functions and cause messy error-checking operations in energy storage, wrong energy estimation in electric vehicle charging, and even fraudulent transactions in peer-to-peer energy trading models. Scalable blockchain-based models, physical unclonable function, interoperable security protocols, and trustworthy AI models designed for managing distributed microgrids in SG2 are typical promising protection models for future research.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.