同时考虑图像和文本数据之间的相关性和注意力图谱的置信度的损伤级别分类法

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Keisuke Maeda, Naoki Ogawa, Takahiro Ogawa, Miki Haseyama
{"title":"同时考虑图像和文本数据之间的相关性和注意力图谱的置信度的损伤级别分类法","authors":"Keisuke Maeda, Naoki Ogawa, Takahiro Ogawa, Miki Haseyama","doi":"10.1111/mice.13366","DOIUrl":null,"url":null,"abstract":"In damage‐level classification, deep learning. models are more likely to focus on regions unrelated to classification targets because of the complexities inherent in real data, such as the diversity of damages (e.g., crack, efflorescence, and corrosion). This causes performance degradation. To solve this problem, it is necessary to handle data complexity and uncertainty. This study proposes a multimodal deep learning model that can focus on damaged regions using text data related to damage in images, such as materials and components. Furthermore, by adjusting the effect of attention maps on damage‐level classification performance based on the confidence calculated when estimating these maps, the proposed method realizes an accurate damage‐level classification. Our contribution is the development of a model with an end‐to‐end multimodal attention mechanism that can simultaneously consider both text and image data and the confidence of the attention map. Finally, experiments using real images validate the effectiveness of the proposed method.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"13 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage‐level classification considering both correlation between image and text data and confidence of attention map\",\"authors\":\"Keisuke Maeda, Naoki Ogawa, Takahiro Ogawa, Miki Haseyama\",\"doi\":\"10.1111/mice.13366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In damage‐level classification, deep learning. models are more likely to focus on regions unrelated to classification targets because of the complexities inherent in real data, such as the diversity of damages (e.g., crack, efflorescence, and corrosion). This causes performance degradation. To solve this problem, it is necessary to handle data complexity and uncertainty. This study proposes a multimodal deep learning model that can focus on damaged regions using text data related to damage in images, such as materials and components. Furthermore, by adjusting the effect of attention maps on damage‐level classification performance based on the confidence calculated when estimating these maps, the proposed method realizes an accurate damage‐level classification. Our contribution is the development of a model with an end‐to‐end multimodal attention mechanism that can simultaneously consider both text and image data and the confidence of the attention map. Finally, experiments using real images validate the effectiveness of the proposed method.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13366\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13366","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在损坏级分类中,由于真实数据固有的复杂性,如损坏的多样性(如裂缝、渗出和腐蚀),深度学习模型更有可能关注与分类目标无关的区域。这会导致性能下降。要解决这个问题,就必须处理数据的复杂性和不确定性。本研究提出了一种多模态深度学习模型,该模型可以利用图像中与损坏相关的文本数据(如材料和部件)来关注损坏区域。此外,通过根据估计这些地图时计算出的置信度来调整注意力地图对损坏级别分类性能的影响,所提出的方法实现了准确的损坏级别分类。我们的贡献在于开发了一个具有端到端多模态注意力机制的模型,它可以同时考虑文本和图像数据以及注意力图的置信度。最后,使用真实图像进行的实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage‐level classification considering both correlation between image and text data and confidence of attention map
In damage‐level classification, deep learning. models are more likely to focus on regions unrelated to classification targets because of the complexities inherent in real data, such as the diversity of damages (e.g., crack, efflorescence, and corrosion). This causes performance degradation. To solve this problem, it is necessary to handle data complexity and uncertainty. This study proposes a multimodal deep learning model that can focus on damaged regions using text data related to damage in images, such as materials and components. Furthermore, by adjusting the effect of attention maps on damage‐level classification performance based on the confidence calculated when estimating these maps, the proposed method realizes an accurate damage‐level classification. Our contribution is the development of a model with an end‐to‐end multimodal attention mechanism that can simultaneously consider both text and image data and the confidence of the attention map. Finally, experiments using real images validate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信