Huayan Hu , Tianji Zhao , Zehao Ning , Jian-Feng Wen , Tongde Shen , Shujuan Wang , Miao Song
{"title":"一种新型时效硬化奥氏体不锈钢,具有极佳的可印刷性","authors":"Huayan Hu , Tianji Zhao , Zehao Ning , Jian-Feng Wen , Tongde Shen , Shujuan Wang , Miao Song","doi":"10.1016/j.actamat.2024.120547","DOIUrl":null,"url":null,"abstract":"<div><div>Precipitation-hardened high strength alloys, such as nickel-based alloys, aluminum alloys and stainless steels, are susceptible to hot cracking during 3D printing. This issue is typically mitigated by reducing solute segregation or promoting columnar-to-equiaxed transition. Here, we demonstrate an alternative approach by increasing segregation solutes, especially Ti element, to reduce hot cracking during laser powder bed fusion (LPBF) additive manufacturing of a new austenitic stainless steel (ASS). Enhanced segregation triggers peritectic-like reactions at cell/grain boundaries, forming multiple phases that bridge FCC dendrites. As a result, the new ASS exhibited excellent printability across a broad range of processing parameters. The as-built (AB) steel displayed a heterogeneous columnar grain microstructure with fine L2<sub>1</sub>/BCC/C14 precipitates partially decorating cell structures, achieving a yield strength (σ<sub>0.2</sub>) above 690 MPa and uniform elongation (ε<sub>u</sub>) beyond 17.5 %. The epitaxial growth of the columnar grains was frequently interrupted by puddles of fine grains, leading to near-isotropic tensile properties. Following isochronal annealing at temperatures between 600 and 1150 °C for two hours, the AB steel underwent varying degrees of microstructure evolution, resulting in a broad range of mechanical properties (σ<sub>0.2</sub> from 300 to 1460 MPa and ε<sub>u</sub> from 59.5 % to 7.6 %). This high strength is attributed to the formation of the L2<sub>1</sub>/σ/η multiple phases at cell and grain boundaries, in combination with coherent L1<sub>2</sub>-ordered (γ') nanoparticles precipitated within cell interiors during aging. This study explored that compositional design leveraging the unique solidification behavior of the <span>L</span>PBF process can produce hierarchical-structured stainless steels with excellent printability and tunable mechanical performance.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120547"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel age-hardenable austenitic stainless steel with superb printability\",\"authors\":\"Huayan Hu , Tianji Zhao , Zehao Ning , Jian-Feng Wen , Tongde Shen , Shujuan Wang , Miao Song\",\"doi\":\"10.1016/j.actamat.2024.120547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precipitation-hardened high strength alloys, such as nickel-based alloys, aluminum alloys and stainless steels, are susceptible to hot cracking during 3D printing. This issue is typically mitigated by reducing solute segregation or promoting columnar-to-equiaxed transition. Here, we demonstrate an alternative approach by increasing segregation solutes, especially Ti element, to reduce hot cracking during laser powder bed fusion (LPBF) additive manufacturing of a new austenitic stainless steel (ASS). Enhanced segregation triggers peritectic-like reactions at cell/grain boundaries, forming multiple phases that bridge FCC dendrites. As a result, the new ASS exhibited excellent printability across a broad range of processing parameters. The as-built (AB) steel displayed a heterogeneous columnar grain microstructure with fine L2<sub>1</sub>/BCC/C14 precipitates partially decorating cell structures, achieving a yield strength (σ<sub>0.2</sub>) above 690 MPa and uniform elongation (ε<sub>u</sub>) beyond 17.5 %. The epitaxial growth of the columnar grains was frequently interrupted by puddles of fine grains, leading to near-isotropic tensile properties. Following isochronal annealing at temperatures between 600 and 1150 °C for two hours, the AB steel underwent varying degrees of microstructure evolution, resulting in a broad range of mechanical properties (σ<sub>0.2</sub> from 300 to 1460 MPa and ε<sub>u</sub> from 59.5 % to 7.6 %). This high strength is attributed to the formation of the L2<sub>1</sub>/σ/η multiple phases at cell and grain boundaries, in combination with coherent L1<sub>2</sub>-ordered (γ') nanoparticles precipitated within cell interiors during aging. This study explored that compositional design leveraging the unique solidification behavior of the <span>L</span>PBF process can produce hierarchical-structured stainless steels with excellent printability and tunable mechanical performance.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"283 \",\"pages\":\"Article 120547\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645424008954\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008954","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel age-hardenable austenitic stainless steel with superb printability
Precipitation-hardened high strength alloys, such as nickel-based alloys, aluminum alloys and stainless steels, are susceptible to hot cracking during 3D printing. This issue is typically mitigated by reducing solute segregation or promoting columnar-to-equiaxed transition. Here, we demonstrate an alternative approach by increasing segregation solutes, especially Ti element, to reduce hot cracking during laser powder bed fusion (LPBF) additive manufacturing of a new austenitic stainless steel (ASS). Enhanced segregation triggers peritectic-like reactions at cell/grain boundaries, forming multiple phases that bridge FCC dendrites. As a result, the new ASS exhibited excellent printability across a broad range of processing parameters. The as-built (AB) steel displayed a heterogeneous columnar grain microstructure with fine L21/BCC/C14 precipitates partially decorating cell structures, achieving a yield strength (σ0.2) above 690 MPa and uniform elongation (εu) beyond 17.5 %. The epitaxial growth of the columnar grains was frequently interrupted by puddles of fine grains, leading to near-isotropic tensile properties. Following isochronal annealing at temperatures between 600 and 1150 °C for two hours, the AB steel underwent varying degrees of microstructure evolution, resulting in a broad range of mechanical properties (σ0.2 from 300 to 1460 MPa and εu from 59.5 % to 7.6 %). This high strength is attributed to the formation of the L21/σ/η multiple phases at cell and grain boundaries, in combination with coherent L12-ordered (γ') nanoparticles precipitated within cell interiors during aging. This study explored that compositional design leveraging the unique solidification behavior of the LPBF process can produce hierarchical-structured stainless steels with excellent printability and tunable mechanical performance.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.