Yang Zuo , Yu Fu , Renlong Xiong , Huabei Peng , Hui Wang , Yuhua Wen , Seon-Gyu Kim , Donghwa Lee , Hyoung Seop Kim
{"title":"铁锰硅镍铝高熵合金的低温变形强化机制","authors":"Yang Zuo , Yu Fu , Renlong Xiong , Huabei Peng , Hui Wang , Yuhua Wen , Seon-Gyu Kim , Donghwa Lee , Hyoung Seop Kim","doi":"10.1016/j.actamat.2024.120554","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical properties and deformation mechanisms of a newly developed Co-free FeMnSiNiAl high entropy alloy (HEA) at room and cryogenic temperatures were systematically investigated. The initial tensile deformation at room temperature was dominated by dislocation slipping, with modest strengthening from the Transformation-Induced Plasticity (TRIP) effect due to the deformation-induced FCC → HCP martensitic transformation. Subsequently, the TRIP effect was markedly enhanced during the middle and later stages of deformation, leading to an excellent combination of yield strength (<em>σ</em><sub>y</sub>, 315.1 MPa), ultimate tensile strength (<em>σ</em><sub>u</sub>, 773.4 MPa), and fracture elongations (<em>ε</em><sub>f</sub>, 78.3 %). The strengthening by the TRIP effect was significantly enhanced at cryogenic temperatures as a result of enhanced FCC → HCP martensitic transformation. This resulted in a synergetic improvement in strength and ductility at 223 K, with <em>σ</em><sub>y</sub> of 363.6 MPa, <em>σ</em><sub>u</sub> of 832.1 MPa, and <em>ε</em><sub>f</sub> of 87.2 %. The enhanced ductility at 223 K was linked to the FCC → HCP → BCC sequential martensitic transformation during the middle and later stages of deformation, which acted as an additional way to accommodate plastic strain and delay strain localization. However, the rapid FCC → HCP transformation at the early stage of deformation at 173 K and 77 K impeded the FCC → HCP → BCC sequential martensitic transformation during subsequent deformation stages, thus remarkably enhancing strength but reducing ductility. Our findings provide new insights into the design and development of TRIP-assisted single-phase FCC HEAs for cryogenic applications.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120554"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic deformation strengthening mechanisms in FeMnSiNiAl high-entropy alloys\",\"authors\":\"Yang Zuo , Yu Fu , Renlong Xiong , Huabei Peng , Hui Wang , Yuhua Wen , Seon-Gyu Kim , Donghwa Lee , Hyoung Seop Kim\",\"doi\":\"10.1016/j.actamat.2024.120554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical properties and deformation mechanisms of a newly developed Co-free FeMnSiNiAl high entropy alloy (HEA) at room and cryogenic temperatures were systematically investigated. The initial tensile deformation at room temperature was dominated by dislocation slipping, with modest strengthening from the Transformation-Induced Plasticity (TRIP) effect due to the deformation-induced FCC → HCP martensitic transformation. Subsequently, the TRIP effect was markedly enhanced during the middle and later stages of deformation, leading to an excellent combination of yield strength (<em>σ</em><sub>y</sub>, 315.1 MPa), ultimate tensile strength (<em>σ</em><sub>u</sub>, 773.4 MPa), and fracture elongations (<em>ε</em><sub>f</sub>, 78.3 %). The strengthening by the TRIP effect was significantly enhanced at cryogenic temperatures as a result of enhanced FCC → HCP martensitic transformation. This resulted in a synergetic improvement in strength and ductility at 223 K, with <em>σ</em><sub>y</sub> of 363.6 MPa, <em>σ</em><sub>u</sub> of 832.1 MPa, and <em>ε</em><sub>f</sub> of 87.2 %. The enhanced ductility at 223 K was linked to the FCC → HCP → BCC sequential martensitic transformation during the middle and later stages of deformation, which acted as an additional way to accommodate plastic strain and delay strain localization. However, the rapid FCC → HCP transformation at the early stage of deformation at 173 K and 77 K impeded the FCC → HCP → BCC sequential martensitic transformation during subsequent deformation stages, thus remarkably enhancing strength but reducing ductility. Our findings provide new insights into the design and development of TRIP-assisted single-phase FCC HEAs for cryogenic applications.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"283 \",\"pages\":\"Article 120554\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645424009029\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424009029","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cryogenic deformation strengthening mechanisms in FeMnSiNiAl high-entropy alloys
The mechanical properties and deformation mechanisms of a newly developed Co-free FeMnSiNiAl high entropy alloy (HEA) at room and cryogenic temperatures were systematically investigated. The initial tensile deformation at room temperature was dominated by dislocation slipping, with modest strengthening from the Transformation-Induced Plasticity (TRIP) effect due to the deformation-induced FCC → HCP martensitic transformation. Subsequently, the TRIP effect was markedly enhanced during the middle and later stages of deformation, leading to an excellent combination of yield strength (σy, 315.1 MPa), ultimate tensile strength (σu, 773.4 MPa), and fracture elongations (εf, 78.3 %). The strengthening by the TRIP effect was significantly enhanced at cryogenic temperatures as a result of enhanced FCC → HCP martensitic transformation. This resulted in a synergetic improvement in strength and ductility at 223 K, with σy of 363.6 MPa, σu of 832.1 MPa, and εf of 87.2 %. The enhanced ductility at 223 K was linked to the FCC → HCP → BCC sequential martensitic transformation during the middle and later stages of deformation, which acted as an additional way to accommodate plastic strain and delay strain localization. However, the rapid FCC → HCP transformation at the early stage of deformation at 173 K and 77 K impeded the FCC → HCP → BCC sequential martensitic transformation during subsequent deformation stages, thus remarkably enhancing strength but reducing ductility. Our findings provide new insights into the design and development of TRIP-assisted single-phase FCC HEAs for cryogenic applications.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.