Qingyao Tian;Huai Liao;Xinyan Huang;Bingyu Yang;Jinlin Wu;Jian Chen;Lujie Li;Hongbin Liu
{"title":"BronchoTrack:用于支气管镜定位的气道管腔追踪技术","authors":"Qingyao Tian;Huai Liao;Xinyan Huang;Bingyu Yang;Jinlin Wu;Jian Chen;Lujie Li;Hongbin Liu","doi":"10.1109/TMI.2024.3493170","DOIUrl":null,"url":null,"abstract":"Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing vision-based methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association. To achieve real-time performance, we employ benchmark light weight detector for efficient lumen detection. We firstly introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures. Experiments on 11 patient datasets demonstrate BronchoTrack’s localization accuracy of 81.72%, while accessing up to the 6th generation of airways. Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it localized the bronchoscope into the 8th generation airway successfully. Experimental evaluation underscores BronchoTrack’s real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1321-1333"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BronchoTrack: Airway Lumen Tracking for Branch-Level Bronchoscopic Localization\",\"authors\":\"Qingyao Tian;Huai Liao;Xinyan Huang;Bingyu Yang;Jinlin Wu;Jian Chen;Lujie Li;Hongbin Liu\",\"doi\":\"10.1109/TMI.2024.3493170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing vision-based methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association. To achieve real-time performance, we employ benchmark light weight detector for efficient lumen detection. We firstly introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures. Experiments on 11 patient datasets demonstrate BronchoTrack’s localization accuracy of 81.72%, while accessing up to the 6th generation of airways. Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it localized the bronchoscope into the 8th generation airway successfully. Experimental evaluation underscores BronchoTrack’s real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 3\",\"pages\":\"1321-1333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10746546/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10746546/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BronchoTrack: Airway Lumen Tracking for Branch-Level Bronchoscopic Localization
Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing vision-based methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association. To achieve real-time performance, we employ benchmark light weight detector for efficient lumen detection. We firstly introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures. Experiments on 11 patient datasets demonstrate BronchoTrack’s localization accuracy of 81.72%, while accessing up to the 6th generation of airways. Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it localized the bronchoscope into the 8th generation airway successfully. Experimental evaluation underscores BronchoTrack’s real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.