BronchoTrack:用于支气管镜定位的气道管腔追踪技术

Qingyao Tian;Huai Liao;Xinyan Huang;Bingyu Yang;Jinlin Wu;Jian Chen;Lujie Li;Hongbin Liu
{"title":"BronchoTrack:用于支气管镜定位的气道管腔追踪技术","authors":"Qingyao Tian;Huai Liao;Xinyan Huang;Bingyu Yang;Jinlin Wu;Jian Chen;Lujie Li;Hongbin Liu","doi":"10.1109/TMI.2024.3493170","DOIUrl":null,"url":null,"abstract":"Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing vision-based methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association. To achieve real-time performance, we employ benchmark light weight detector for efficient lumen detection. We firstly introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures. Experiments on 11 patient datasets demonstrate BronchoTrack’s localization accuracy of 81.72%, while accessing up to the 6th generation of airways. Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it localized the bronchoscope into the 8th generation airway successfully. Experimental evaluation underscores BronchoTrack’s real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1321-1333"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BronchoTrack: Airway Lumen Tracking for Branch-Level Bronchoscopic Localization\",\"authors\":\"Qingyao Tian;Huai Liao;Xinyan Huang;Bingyu Yang;Jinlin Wu;Jian Chen;Lujie Li;Hongbin Liu\",\"doi\":\"10.1109/TMI.2024.3493170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing vision-based methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association. To achieve real-time performance, we employ benchmark light weight detector for efficient lumen detection. We firstly introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures. Experiments on 11 patient datasets demonstrate BronchoTrack’s localization accuracy of 81.72%, while accessing up to the 6th generation of airways. Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it localized the bronchoscope into the 8th generation airway successfully. Experimental evaluation underscores BronchoTrack’s real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 3\",\"pages\":\"1321-1333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10746546/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10746546/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时定位支气管镜对保证介入质量至关重要。然而,大多数现有的基于视觉的方法都很难在速度和泛化之间取得平衡。为了应对这些挑战,我们提出了BronchoTrack,这是一个创新的实时框架,用于准确的分支水平定位,包括管腔检测,跟踪和气道关联。为了实现实时性能,我们采用基准轻量级检测器进行高效的流明检测。我们首先将多目标跟踪引入支气管镜定位,减轻了由于支气管镜快速运动和气道结构复杂而导致的管腔识别时间混乱。为了确保患者病例的泛化,我们提出了一种基于语义气道图的无训练检测-气道关联方法,该方法对支气管树结构的层次结构进行编码。在11个患者数据集上的实验表明,BronchoTrack的定位准确率为81.72%,可以访问到第6代气道。此外,我们在猪模型的体内动物研究中测试了BronchoTrack,它成功地将支气管镜定位到第8代气道中。实验评估强调了BronchoTrack在准确性和通用性方面的实时性,证明了其临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BronchoTrack: Airway Lumen Tracking for Branch-Level Bronchoscopic Localization
Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing vision-based methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association. To achieve real-time performance, we employ benchmark light weight detector for efficient lumen detection. We firstly introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures. Experiments on 11 patient datasets demonstrate BronchoTrack’s localization accuracy of 81.72%, while accessing up to the 6th generation of airways. Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it localized the bronchoscope into the 8th generation airway successfully. Experimental evaluation underscores BronchoTrack’s real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信