可学习的先验物改进了肿瘤逆生长建模

Jonas Weidner;Ivan Ezhov;Michal Balcerak;Marie-Christin Metz;Sergey Litvinov;Sebastian Kaltenbach;Leonhard Feiner;Laurin Lux;Florian Kofler;Jana Lipkova;Jonas Latz;Daniel Rueckert;Bjoern Menze;Benedikt Wiestler
{"title":"可学习的先验物改进了肿瘤逆生长建模","authors":"Jonas Weidner;Ivan Ezhov;Michal Balcerak;Marie-Christin Metz;Sergey Litvinov;Sebastian Kaltenbach;Leonhard Feiner;Laurin Lux;Florian Kofler;Jana Lipkova;Jonas Latz;Daniel Rueckert;Bjoern Menze;Benedikt Wiestler","doi":"10.1109/TMI.2024.3494022","DOIUrl":null,"url":null,"abstract":"Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1297-1307"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Learnable Prior Improves Inverse Tumor Growth Modeling\",\"authors\":\"Jonas Weidner;Ivan Ezhov;Michal Balcerak;Marie-Christin Metz;Sergey Litvinov;Sebastian Kaltenbach;Leonhard Feiner;Laurin Lux;Florian Kofler;Jana Lipkova;Jonas Latz;Daniel Rueckert;Bjoern Menze;Benedikt Wiestler\",\"doi\":\"10.1109/TMI.2024.3494022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 3\",\"pages\":\"1297-1307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10748406/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10748406/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物物理模型,特别是涉及偏微分方程(PDEs)的生物物理模型,为针对个体患者定制疾病治疗方案提供了巨大的潜力。然而,由于基于模型的方法的高计算要求或深度学习(DL)方法的有限鲁棒性,这些模型的逆问题解决方面提出了实质性的挑战。我们提出了一个新的框架,以协同的方式利用这两种方法的独特优势。我们的方法将DL集成用于初始参数估计,促进了使用基于DL的先验初始化的高效下游进化采样。我们展示了将快速深度学习算法与高精度进化策略集成在磁共振图像中估计脑肿瘤细胞浓度的有效性。DL-Prior在有效采样参数空间中起着关键作用。这种减少导致五倍的收敛加速和95%的dice得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Learnable Prior Improves Inverse Tumor Growth Modeling
Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信