Ruijiang Li, Jiang Lu, Ziyi Liu, Duoyun Yi, Mengxuan Wan, Yixin Zhang, Peng Zan, Song He, Xiaochen Bo
{"title":"可重用性报告:探索变异图编码器在药物设计中预测分子毒性的实用性","authors":"Ruijiang Li, Jiang Lu, Ziyi Liu, Duoyun Yi, Mengxuan Wan, Yixin Zhang, Peng Zan, Song He, Xiaochen Bo","doi":"10.1038/s42256-024-00923-6","DOIUrl":null,"url":null,"abstract":"<p>Variational graph encoders effectively combine graph convolutional networks with variational autoencoders, and have been widely employed for biomedical graph-structured data. Lam and colleagues developed a framework based on the variational graph encoder, NYAN, to facilitate the prediction of molecular properties in computer-assisted drug design. In NYAN, the low-dimensional latent variables derived from the variational graph autoencoder are leveraged as a universal molecular representation, yielding remarkable performance and versatility throughout the drug discovery process. In this study we assess the reusability of NYAN and investigate its applicability within the context of specific chemical toxicity prediction. The prediction accuracy—based on NYAN latent representations and other popular molecular feature representations—is benchmarked across a broad spectrum of toxicity datasets, and the adaptation of NYAN latent representation to other surrogate models is also explored. NYAN, equipped with common surrogate models, shows competitive or better performance in toxicity prediction compared with other state-of-the-art molecular property prediction methods. We also devise a multi-task learning strategy with feature enhancement and consensus inference by leveraging the low dimensionality and feature diversity of NYAN latent space, further boosting the multi-endpoint acute toxicity estimation. The analysis delves into the adaptability of the generic graph variational model, showcasing its aptitude for tailored tasks within the realm of drug discovery.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"35 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reusability report: exploring the utility of variational graph encoders for predicting molecular toxicity in drug design\",\"authors\":\"Ruijiang Li, Jiang Lu, Ziyi Liu, Duoyun Yi, Mengxuan Wan, Yixin Zhang, Peng Zan, Song He, Xiaochen Bo\",\"doi\":\"10.1038/s42256-024-00923-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variational graph encoders effectively combine graph convolutional networks with variational autoencoders, and have been widely employed for biomedical graph-structured data. Lam and colleagues developed a framework based on the variational graph encoder, NYAN, to facilitate the prediction of molecular properties in computer-assisted drug design. In NYAN, the low-dimensional latent variables derived from the variational graph autoencoder are leveraged as a universal molecular representation, yielding remarkable performance and versatility throughout the drug discovery process. In this study we assess the reusability of NYAN and investigate its applicability within the context of specific chemical toxicity prediction. The prediction accuracy—based on NYAN latent representations and other popular molecular feature representations—is benchmarked across a broad spectrum of toxicity datasets, and the adaptation of NYAN latent representation to other surrogate models is also explored. NYAN, equipped with common surrogate models, shows competitive or better performance in toxicity prediction compared with other state-of-the-art molecular property prediction methods. We also devise a multi-task learning strategy with feature enhancement and consensus inference by leveraging the low dimensionality and feature diversity of NYAN latent space, further boosting the multi-endpoint acute toxicity estimation. The analysis delves into the adaptability of the generic graph variational model, showcasing its aptitude for tailored tasks within the realm of drug discovery.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-024-00923-6\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00923-6","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Reusability report: exploring the utility of variational graph encoders for predicting molecular toxicity in drug design
Variational graph encoders effectively combine graph convolutional networks with variational autoencoders, and have been widely employed for biomedical graph-structured data. Lam and colleagues developed a framework based on the variational graph encoder, NYAN, to facilitate the prediction of molecular properties in computer-assisted drug design. In NYAN, the low-dimensional latent variables derived from the variational graph autoencoder are leveraged as a universal molecular representation, yielding remarkable performance and versatility throughout the drug discovery process. In this study we assess the reusability of NYAN and investigate its applicability within the context of specific chemical toxicity prediction. The prediction accuracy—based on NYAN latent representations and other popular molecular feature representations—is benchmarked across a broad spectrum of toxicity datasets, and the adaptation of NYAN latent representation to other surrogate models is also explored. NYAN, equipped with common surrogate models, shows competitive or better performance in toxicity prediction compared with other state-of-the-art molecular property prediction methods. We also devise a multi-task learning strategy with feature enhancement and consensus inference by leveraging the low dimensionality and feature diversity of NYAN latent space, further boosting the multi-endpoint acute toxicity estimation. The analysis delves into the adaptability of the generic graph variational model, showcasing its aptitude for tailored tasks within the realm of drug discovery.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.