Tharindu Adikari;Haider Al-Lawati;Jason Lam;Zhenhua Hu;Stark C. Draper
{"title":"利用任务分组开发分布式计算系统中的落伍者","authors":"Tharindu Adikari;Haider Al-Lawati;Jason Lam;Zhenhua Hu;Stark C. Draper","doi":"10.1109/TSC.2024.3495513","DOIUrl":null,"url":null,"abstract":"We consider the problem of stragglers in distributed computing systems. Stragglers, which are compute nodes that unpredictably slow down, often increase the completion times of tasks. One common approach to mitigating stragglers is work replication, where only the first completion among replicated tasks is accepted, discarding the others. However, discarding work leads to resource wastage. In this article, we propose a method for exploiting the work completed by stragglers rather than discarding it. The idea is to increase the granularity of the assigned work, and to increase the frequency of worker updates. We show that the proposed method reduces the completion time of tasks via experiments performed on a simulated cluster as well as on Amazon EC2 with Apache Hadoop.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"17 6","pages":"3613-3626"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Stragglers in Distributed Computing Systems With Task Grouping\",\"authors\":\"Tharindu Adikari;Haider Al-Lawati;Jason Lam;Zhenhua Hu;Stark C. Draper\",\"doi\":\"10.1109/TSC.2024.3495513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of stragglers in distributed computing systems. Stragglers, which are compute nodes that unpredictably slow down, often increase the completion times of tasks. One common approach to mitigating stragglers is work replication, where only the first completion among replicated tasks is accepted, discarding the others. However, discarding work leads to resource wastage. In this article, we propose a method for exploiting the work completed by stragglers rather than discarding it. The idea is to increase the granularity of the assigned work, and to increase the frequency of worker updates. We show that the proposed method reduces the completion time of tasks via experiments performed on a simulated cluster as well as on Amazon EC2 with Apache Hadoop.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"17 6\",\"pages\":\"3613-3626\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10748387/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748387/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Exploiting Stragglers in Distributed Computing Systems With Task Grouping
We consider the problem of stragglers in distributed computing systems. Stragglers, which are compute nodes that unpredictably slow down, often increase the completion times of tasks. One common approach to mitigating stragglers is work replication, where only the first completion among replicated tasks is accepted, discarding the others. However, discarding work leads to resource wastage. In this article, we propose a method for exploiting the work completed by stragglers rather than discarding it. The idea is to increase the granularity of the assigned work, and to increase the frequency of worker updates. We show that the proposed method reduces the completion time of tasks via experiments performed on a simulated cluster as well as on Amazon EC2 with Apache Hadoop.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.