{"title":"具有二次状态方程的各向异性恒星物体的综合分析","authors":"Kiran Pant, Pratibha Fuloria","doi":"10.1007/s12043-024-02846-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present investigation examines the behaviour of compact relativistic objects characterised by static and spherically symmetric space–time for neutral anisotropic matter distribution. More specifically, we consider an equation of state (EoS), in which density and radial pressure are connected with each other quadratically. By smoothly matching the interior space–time with the exterior at the stellar surface, the appropriate values of the constant parameters for physically realistic solutions are obtained to model various compact stars. We explore the physical behaviour of compact stellar models SMC X-4, Vela X-1, CEN X-3, PSR J1614-2230, LMC X-4 and EXO 1785-248. Further, we describe several features of the compact stellar systems that exhibit physically acceptable attributes with no singularity. All important stability criteria, such as the energy conditions, causality conditions, Buchdhal condition and the adiabatic index are fulfilled by our neutral anisotropic compact star models. An in-depth comprehension of the physical characteristics of the proposed solution has been achieved through meticulous analytical and graphical examinations. By utilising this solution, the masses and radii of six compact stellar candidates mentioned above are optimised with the observed values obtained experimentally. The derived solution might be useful to enhance the understanding of the strong-field regimes and self-gravitating entities.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive analysis of anisotropic stellar objects with quadratic equation of state\",\"authors\":\"Kiran Pant, Pratibha Fuloria\",\"doi\":\"10.1007/s12043-024-02846-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present investigation examines the behaviour of compact relativistic objects characterised by static and spherically symmetric space–time for neutral anisotropic matter distribution. More specifically, we consider an equation of state (EoS), in which density and radial pressure are connected with each other quadratically. By smoothly matching the interior space–time with the exterior at the stellar surface, the appropriate values of the constant parameters for physically realistic solutions are obtained to model various compact stars. We explore the physical behaviour of compact stellar models SMC X-4, Vela X-1, CEN X-3, PSR J1614-2230, LMC X-4 and EXO 1785-248. Further, we describe several features of the compact stellar systems that exhibit physically acceptable attributes with no singularity. All important stability criteria, such as the energy conditions, causality conditions, Buchdhal condition and the adiabatic index are fulfilled by our neutral anisotropic compact star models. An in-depth comprehension of the physical characteristics of the proposed solution has been achieved through meticulous analytical and graphical examinations. By utilising this solution, the masses and radii of six compact stellar candidates mentioned above are optimised with the observed values obtained experimentally. The derived solution might be useful to enhance the understanding of the strong-field regimes and self-gravitating entities.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02846-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02846-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A comprehensive analysis of anisotropic stellar objects with quadratic equation of state
The present investigation examines the behaviour of compact relativistic objects characterised by static and spherically symmetric space–time for neutral anisotropic matter distribution. More specifically, we consider an equation of state (EoS), in which density and radial pressure are connected with each other quadratically. By smoothly matching the interior space–time with the exterior at the stellar surface, the appropriate values of the constant parameters for physically realistic solutions are obtained to model various compact stars. We explore the physical behaviour of compact stellar models SMC X-4, Vela X-1, CEN X-3, PSR J1614-2230, LMC X-4 and EXO 1785-248. Further, we describe several features of the compact stellar systems that exhibit physically acceptable attributes with no singularity. All important stability criteria, such as the energy conditions, causality conditions, Buchdhal condition and the adiabatic index are fulfilled by our neutral anisotropic compact star models. An in-depth comprehension of the physical characteristics of the proposed solution has been achieved through meticulous analytical and graphical examinations. By utilising this solution, the masses and radii of six compact stellar candidates mentioned above are optimised with the observed values obtained experimentally. The derived solution might be useful to enhance the understanding of the strong-field regimes and self-gravitating entities.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.