{"title":"探索富含锌和叶酸的喷雾干燥黑莓粉作为儿童和孕妇营养替代品的潜力","authors":"Oscar Vega-Castro, Vargas-Marulanda Diego, Castro-Tobón Santiago, Vallejo-Marulanda Laura, Vanegas-Arboleda Valentina, Henao-González Daniel, Gómez-Narváez Faver","doi":"10.1007/s11483-024-09892-0","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, strategies to achieve the Sustainable Development Goals (SDGs) are being sought worldwide. Accordingly, this study seeks to contribute to achieving SDGs 2 (Zero Hunger) and 3 (Good Health and Well-being) by addressing nutritional deficiencies in pregnant women and children. These vulnerable populations worldwide have malnutrition problems associated with a lack of zinc and folic acid, causing them health problems. This research aimed to develop a blackberry powder fortified with zinc and folic acid obtained by spray drying as a nutritional alternative for children and pregnant women. The blackberry was characterized according to the AOAC, an optimization of the spray drying process with a central composite experimental design. The powder’s bulk and tapped density, solubility, and anthocyanin content were determined. The variation in zinc and folic acid content over a storage period was measured. The moisture content of the fresh blackberries was 89%. The solubility and anthocyanin content of blackberry powder were 86% and 0.263 mg cyanidin-3-glucose/g, respectively. The optimal spray drying conditions were: 23.6% solid content and an air inlet temperature of 167.92 °C. The bulk density of the powder did not change with storage time (<i>p</i> > 0.05); the zinc and folic acid content in blackberry powder was 144 and 90 (µg/100 g), respectively. A blackberry powder fortified with zinc and folic acid was obtained by spray drying, guaranteeing 30% of the daily nutritional requirement for pregnant women and children, in a 50-gram portion of powder.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-024-09892-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential of Spray-Dried Blackberry Powder Enriched with Zinc and Folic Acid as a Nutritional Alternative for Children and Pregnant Women\",\"authors\":\"Oscar Vega-Castro, Vargas-Marulanda Diego, Castro-Tobón Santiago, Vallejo-Marulanda Laura, Vanegas-Arboleda Valentina, Henao-González Daniel, Gómez-Narváez Faver\",\"doi\":\"10.1007/s11483-024-09892-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, strategies to achieve the Sustainable Development Goals (SDGs) are being sought worldwide. Accordingly, this study seeks to contribute to achieving SDGs 2 (Zero Hunger) and 3 (Good Health and Well-being) by addressing nutritional deficiencies in pregnant women and children. These vulnerable populations worldwide have malnutrition problems associated with a lack of zinc and folic acid, causing them health problems. This research aimed to develop a blackberry powder fortified with zinc and folic acid obtained by spray drying as a nutritional alternative for children and pregnant women. The blackberry was characterized according to the AOAC, an optimization of the spray drying process with a central composite experimental design. The powder’s bulk and tapped density, solubility, and anthocyanin content were determined. The variation in zinc and folic acid content over a storage period was measured. The moisture content of the fresh blackberries was 89%. The solubility and anthocyanin content of blackberry powder were 86% and 0.263 mg cyanidin-3-glucose/g, respectively. The optimal spray drying conditions were: 23.6% solid content and an air inlet temperature of 167.92 °C. The bulk density of the powder did not change with storage time (<i>p</i> > 0.05); the zinc and folic acid content in blackberry powder was 144 and 90 (µg/100 g), respectively. A blackberry powder fortified with zinc and folic acid was obtained by spray drying, guaranteeing 30% of the daily nutritional requirement for pregnant women and children, in a 50-gram portion of powder.</p></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11483-024-09892-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-024-09892-0\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09892-0","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Exploring the Potential of Spray-Dried Blackberry Powder Enriched with Zinc and Folic Acid as a Nutritional Alternative for Children and Pregnant Women
Currently, strategies to achieve the Sustainable Development Goals (SDGs) are being sought worldwide. Accordingly, this study seeks to contribute to achieving SDGs 2 (Zero Hunger) and 3 (Good Health and Well-being) by addressing nutritional deficiencies in pregnant women and children. These vulnerable populations worldwide have malnutrition problems associated with a lack of zinc and folic acid, causing them health problems. This research aimed to develop a blackberry powder fortified with zinc and folic acid obtained by spray drying as a nutritional alternative for children and pregnant women. The blackberry was characterized according to the AOAC, an optimization of the spray drying process with a central composite experimental design. The powder’s bulk and tapped density, solubility, and anthocyanin content were determined. The variation in zinc and folic acid content over a storage period was measured. The moisture content of the fresh blackberries was 89%. The solubility and anthocyanin content of blackberry powder were 86% and 0.263 mg cyanidin-3-glucose/g, respectively. The optimal spray drying conditions were: 23.6% solid content and an air inlet temperature of 167.92 °C. The bulk density of the powder did not change with storage time (p > 0.05); the zinc and folic acid content in blackberry powder was 144 and 90 (µg/100 g), respectively. A blackberry powder fortified with zinc and folic acid was obtained by spray drying, guaranteeing 30% of the daily nutritional requirement for pregnant women and children, in a 50-gram portion of powder.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.