{"title":"论整数环偶数 K 群的 pj 级","authors":"Meng Fai Lim","doi":"10.1007/s10114-024-1312-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>L/F</i> be a finite Galois extension of number fields of degree <i>n</i> and let <i>p</i> be a prime which does not divide <i>n</i>. We shall study the <i>p</i><sup><i>j</i></sup>-rank of <span>\\(K_{2i}(\\mathcal{O}_{L})\\)</span> via its Galois module structure following the approaches of Iwasawa and Komatsu–Nakano. Along the way, we generalize previous observations of Browkin, Wu and Zhou on <i>K</i><sub>2</sub>-groups to higher even <i>K</i>-groups. We also give examples to illustrate our results. Finally, we apply our discussion to refine a result of Kitajima pertaining to the <i>p</i>-rank of even <i>K</i>-groups in the cyclotomic ℤ<sub><i>l</i></sub>-extension, where <i>l</i> ≠ <i>p</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pj-rank of Even K-groups of Rings of Integers\",\"authors\":\"Meng Fai Lim\",\"doi\":\"10.1007/s10114-024-1312-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>L/F</i> be a finite Galois extension of number fields of degree <i>n</i> and let <i>p</i> be a prime which does not divide <i>n</i>. We shall study the <i>p</i><sup><i>j</i></sup>-rank of <span>\\\\(K_{2i}(\\\\mathcal{O}_{L})\\\\)</span> via its Galois module structure following the approaches of Iwasawa and Komatsu–Nakano. Along the way, we generalize previous observations of Browkin, Wu and Zhou on <i>K</i><sub>2</sub>-groups to higher even <i>K</i>-groups. We also give examples to illustrate our results. Finally, we apply our discussion to refine a result of Kitajima pertaining to the <i>p</i>-rank of even <i>K</i>-groups in the cyclotomic ℤ<sub><i>l</i></sub>-extension, where <i>l</i> ≠ <i>p</i>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-1312-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-1312-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 L/F 是 n 阶数域的有限伽罗瓦扩展,设 p 是不除以 n 的素数。我们将按照岩泽(Iwasawa)和小松中野(Komatsu-Nakano)的方法,通过伽罗瓦模块结构来研究 \(K_{2i}(\mathcal{O}_{L})\的 pj-rank。在此过程中,我们将 Browkin、Wu 和 Zhou 以前对 K2 群的观察推广到更高的偶数 K 群。我们还举例说明了我们的结果。最后,我们运用我们的讨论来完善北岛(Kitajima)关于偶数 K 群在环ℤl-扩展(其中 l ≠ p)中的 p 级的结果。
Let L/F be a finite Galois extension of number fields of degree n and let p be a prime which does not divide n. We shall study the pj-rank of \(K_{2i}(\mathcal{O}_{L})\) via its Galois module structure following the approaches of Iwasawa and Komatsu–Nakano. Along the way, we generalize previous observations of Browkin, Wu and Zhou on K2-groups to higher even K-groups. We also give examples to illustrate our results. Finally, we apply our discussion to refine a result of Kitajima pertaining to the p-rank of even K-groups in the cyclotomic ℤl-extension, where l ≠ p.