多目标跟踪中的轨迹聚合和排斥:MHT、JPDA 和信念传播方法分析

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Thomas Kropfreiter;Florian Meyer;David F. Crouse;Stefano Coraluppi;Franz Hlawatsch;Peter Willett
{"title":"多目标跟踪中的轨迹聚合和排斥:MHT、JPDA 和信念传播方法分析","authors":"Thomas Kropfreiter;Florian Meyer;David F. Crouse;Stefano Coraluppi;Franz Hlawatsch;Peter Willett","doi":"10.1109/OJSP.2024.3451167","DOIUrl":null,"url":null,"abstract":"Joint probabilistic data association (JPDA) filter methods and multiple hypothesis tracking (MHT) methods are widely used for multitarget tracking (MTT). However, they are known to exhibit undesirable behavior in tracking scenarios with targets in close proximity: JPDA filter methods suffer from the track coalescence effect, i.e., the estimated tracks of targets in close proximity tend to merge and can become indistinguishable, while MHT methods suffer from an opposite effect known as track repulsion, i.e., the estimated tracks of targets in close proximity tend to repel each other in the sense that their separation is larger than the actual distance between the targets. In this paper, we review the JPDA filter and MHT methods and discuss the track coalescence and track repulsion effects. We also consider a more recent methodology for MTT that is based on the belief propagation (BP) algorithm. We argue that BP-based MTT does not exhibit track repulsion because it is not based on maximum a posteriori estimation, and that it exhibits significantly reduced track coalescence because certain properties of the BP messages related to data association encourage separation of target state estimates. Our theoretical arguments are confirmed by numerical results for four representative simulation scenarios.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1089-1106"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10654568","citationCount":"0","resultStr":"{\"title\":\"Track Coalescence and Repulsion in Multitarget Tracking: An Analysis of MHT, JPDA, and Belief Propagation Methods\",\"authors\":\"Thomas Kropfreiter;Florian Meyer;David F. Crouse;Stefano Coraluppi;Franz Hlawatsch;Peter Willett\",\"doi\":\"10.1109/OJSP.2024.3451167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint probabilistic data association (JPDA) filter methods and multiple hypothesis tracking (MHT) methods are widely used for multitarget tracking (MTT). However, they are known to exhibit undesirable behavior in tracking scenarios with targets in close proximity: JPDA filter methods suffer from the track coalescence effect, i.e., the estimated tracks of targets in close proximity tend to merge and can become indistinguishable, while MHT methods suffer from an opposite effect known as track repulsion, i.e., the estimated tracks of targets in close proximity tend to repel each other in the sense that their separation is larger than the actual distance between the targets. In this paper, we review the JPDA filter and MHT methods and discuss the track coalescence and track repulsion effects. We also consider a more recent methodology for MTT that is based on the belief propagation (BP) algorithm. We argue that BP-based MTT does not exhibit track repulsion because it is not based on maximum a posteriori estimation, and that it exhibits significantly reduced track coalescence because certain properties of the BP messages related to data association encourage separation of target state estimates. Our theoretical arguments are confirmed by numerical results for four representative simulation scenarios.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"1089-1106\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10654568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654568/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10654568/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

联合概率数据关联(JPDA)滤波方法和多重假设跟踪(MHT)方法被广泛用于多目标跟踪(MTT)。然而,众所周知,在目标距离很近的跟踪场景中,它们会表现出不理想的行为:JPDA 滤波方法会受到轨迹凝聚效应的影响,即近距离目标的估计轨迹趋于合并,变得难以区分;而 MHT 方法则会受到称为轨迹排斥的相反效应的影响,即近距离目标的估计轨迹趋于相互排斥,它们之间的距离大于目标之间的实际距离。本文回顾了 JPDA 滤波和 MHT 方法,并讨论了轨迹凝聚和轨迹排斥效应。我们还考虑了一种基于信念传播(BP)算法的最新 MTT 方法。我们认为,基于 BP 算法的 MTT 不会出现轨迹排斥现象,因为它不是基于最大后验估计,而且由于与数据关联相关的 BP 信息的某些特性会鼓励目标状态估计的分离,因此它能显著减少轨迹凝聚。我们的理论论点得到了四种代表性模拟场景的数值结果的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Track Coalescence and Repulsion in Multitarget Tracking: An Analysis of MHT, JPDA, and Belief Propagation Methods
Joint probabilistic data association (JPDA) filter methods and multiple hypothesis tracking (MHT) methods are widely used for multitarget tracking (MTT). However, they are known to exhibit undesirable behavior in tracking scenarios with targets in close proximity: JPDA filter methods suffer from the track coalescence effect, i.e., the estimated tracks of targets in close proximity tend to merge and can become indistinguishable, while MHT methods suffer from an opposite effect known as track repulsion, i.e., the estimated tracks of targets in close proximity tend to repel each other in the sense that their separation is larger than the actual distance between the targets. In this paper, we review the JPDA filter and MHT methods and discuss the track coalescence and track repulsion effects. We also consider a more recent methodology for MTT that is based on the belief propagation (BP) algorithm. We argue that BP-based MTT does not exhibit track repulsion because it is not based on maximum a posteriori estimation, and that it exhibits significantly reduced track coalescence because certain properties of the BP messages related to data association encourage separation of target state estimates. Our theoretical arguments are confirmed by numerical results for four representative simulation scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信