{"title":"研究利用离子追踪技术制造各向异性高疏水性聚合物表面的可行性","authors":"M. A. Kuvaitseva, P. Yu. Apel","doi":"10.1134/S1061933X24600684","DOIUrl":null,"url":null,"abstract":"<p>In the last two decades, a great interest has been focused on the creation and study of superhydrophobic nanomaterials based on the “lotus effect.” This effect is caused by the heterogeneous wetting of rough surfaces, when the grooves of a rough surface are filled with air (vapor) and water contacts only with the tops of the protrusions. A drop forms a sphere on the surface and rolls down picking up dirt particles when the surface is slightly tilted. Diverse methods have been developed for producing such materials, and the potential of the ion-track technology (ITT) is being investigated. The goal of this work is to study the wettability of surface microtextures by the examples of two materials with different initial degrees of hydrophobicity. The ITT has been employed to obtain samples with maximum water contact angles of 140 ± 5° and 151 ± 5° by modifying the surfaces of polycarbonate and polypropylene films, respectively. It has been shown that such angles are characteristic of microtextures, for which surface fraction <i>f</i> that is in contact with a droplet is decreased to a range of 0 < <i>f</i> < 0.3. Materials with tilted microtextures have been obtained in order to increase the probability of droplet rolling down a material surface in a certain direction. In this case, the wettability becomes anisotropic. A droplet loses its spherical shape and is deformed in the direction of the tilt of needle-like surface elements. It has been found that the anisotropy of wettability is higher at a tilt angle of the texture elements of 45° than that at 30° (relative to the flat surface).</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 5","pages":"730 - 743"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the Feasibility of Creating Anisotropic Highly Hydrophobic Polymer Surfaces by Ion-Track Technology\",\"authors\":\"M. A. Kuvaitseva, P. Yu. Apel\",\"doi\":\"10.1134/S1061933X24600684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the last two decades, a great interest has been focused on the creation and study of superhydrophobic nanomaterials based on the “lotus effect.” This effect is caused by the heterogeneous wetting of rough surfaces, when the grooves of a rough surface are filled with air (vapor) and water contacts only with the tops of the protrusions. A drop forms a sphere on the surface and rolls down picking up dirt particles when the surface is slightly tilted. Diverse methods have been developed for producing such materials, and the potential of the ion-track technology (ITT) is being investigated. The goal of this work is to study the wettability of surface microtextures by the examples of two materials with different initial degrees of hydrophobicity. The ITT has been employed to obtain samples with maximum water contact angles of 140 ± 5° and 151 ± 5° by modifying the surfaces of polycarbonate and polypropylene films, respectively. It has been shown that such angles are characteristic of microtextures, for which surface fraction <i>f</i> that is in contact with a droplet is decreased to a range of 0 < <i>f</i> < 0.3. Materials with tilted microtextures have been obtained in order to increase the probability of droplet rolling down a material surface in a certain direction. In this case, the wettability becomes anisotropic. A droplet loses its spherical shape and is deformed in the direction of the tilt of needle-like surface elements. It has been found that the anisotropy of wettability is higher at a tilt angle of the texture elements of 45° than that at 30° (relative to the flat surface).</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"86 5\",\"pages\":\"730 - 743\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X24600684\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600684","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在过去的二十年里,人们对基于 "莲花效应 "的超疏水纳米材料的创造和研究产生了浓厚的兴趣。这种效应是由粗糙表面的异质润湿引起的,当粗糙表面的凹槽中充满空气(水蒸气)时,水只与突起顶部接触。水滴在表面形成一个球体,当表面略微倾斜时,水滴会向下滚动,吸附污垢颗粒。生产这种材料的方法多种多样,目前正在研究离子轨道技术(ITT)的潜力。这项工作的目的是以两种初始疏水性不同的材料为例,研究表面微混合物的润湿性。通过对聚碳酸酯和聚丙烯薄膜的表面进行改性,采用 ITT 技术获得了最大水接触角分别为 140 ± 5° 和 151 ± 5° 的样品。研究表明,这种角度是微观混合物的特征,在微观混合物中,与水滴接触的表面分数 f 下降到 0 < f < 0.3 的范围。为了增加液滴沿某一方向沿着材料表面滚落的概率,人们获得了具有倾斜微观结构的材料。在这种情况下,润湿性变得各向异性。液滴失去球形形状,沿着针状表面元素的倾斜方向变形。研究发现,当纹理元素的倾斜角为 45°时,润湿性的各向异性要高于 30°(相对于平面)。
Studying the Feasibility of Creating Anisotropic Highly Hydrophobic Polymer Surfaces by Ion-Track Technology
In the last two decades, a great interest has been focused on the creation and study of superhydrophobic nanomaterials based on the “lotus effect.” This effect is caused by the heterogeneous wetting of rough surfaces, when the grooves of a rough surface are filled with air (vapor) and water contacts only with the tops of the protrusions. A drop forms a sphere on the surface and rolls down picking up dirt particles when the surface is slightly tilted. Diverse methods have been developed for producing such materials, and the potential of the ion-track technology (ITT) is being investigated. The goal of this work is to study the wettability of surface microtextures by the examples of two materials with different initial degrees of hydrophobicity. The ITT has been employed to obtain samples with maximum water contact angles of 140 ± 5° and 151 ± 5° by modifying the surfaces of polycarbonate and polypropylene films, respectively. It has been shown that such angles are characteristic of microtextures, for which surface fraction f that is in contact with a droplet is decreased to a range of 0 < f < 0.3. Materials with tilted microtextures have been obtained in order to increase the probability of droplet rolling down a material surface in a certain direction. In this case, the wettability becomes anisotropic. A droplet loses its spherical shape and is deformed in the direction of the tilt of needle-like surface elements. It has been found that the anisotropy of wettability is higher at a tilt angle of the texture elements of 45° than that at 30° (relative to the flat surface).
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.