{"title":"混溶不均匀流体流动的双层平衡模型","authors":"V. Yu. Liapidevskii","doi":"10.1134/S0015462824603395","DOIUrl":null,"url":null,"abstract":"<p>Two-layer flow of a density-stratified fluid with mass transfer between the layers is considered. In the Boussinesq approximation, the equations of motion are reduced to a homogeneous quasilinear system of partial differential equations of mixed type. The flow parameters in the intermediate mixed layer are determined from the equilibrium conditions in a more general model of three-layer flow of a miscible fluid. In particular, the equilibrium conditions imply the constancy of the interlayer Richardson number in velocity-shift flows. A self-similar solution to the problem of breakdown of an arbitrary discontinuity (the lock-exchange problem) in the domain of hyperbolicity of the system under consideration is constructed. The transcritical flow regimes over a local obstacle are studied and the conditions under which the obstacle determines the upstream flow are determined. A comparison of steady-state and time-dependent solutions with the solutions obtained for the original three-layer models of miscible fluid flow is carried out.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 4","pages":"709 - 722"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0015462824603395.pdf","citationCount":"0","resultStr":"{\"title\":\"Two-Layer Equilibrium Model of Miscible Inhomogeneous Fluid Flow\",\"authors\":\"V. Yu. Liapidevskii\",\"doi\":\"10.1134/S0015462824603395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-layer flow of a density-stratified fluid with mass transfer between the layers is considered. In the Boussinesq approximation, the equations of motion are reduced to a homogeneous quasilinear system of partial differential equations of mixed type. The flow parameters in the intermediate mixed layer are determined from the equilibrium conditions in a more general model of three-layer flow of a miscible fluid. In particular, the equilibrium conditions imply the constancy of the interlayer Richardson number in velocity-shift flows. A self-similar solution to the problem of breakdown of an arbitrary discontinuity (the lock-exchange problem) in the domain of hyperbolicity of the system under consideration is constructed. The transcritical flow regimes over a local obstacle are studied and the conditions under which the obstacle determines the upstream flow are determined. A comparison of steady-state and time-dependent solutions with the solutions obtained for the original three-layer models of miscible fluid flow is carried out.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"59 4\",\"pages\":\"709 - 722\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S0015462824603395.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462824603395\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824603395","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Two-Layer Equilibrium Model of Miscible Inhomogeneous Fluid Flow
Two-layer flow of a density-stratified fluid with mass transfer between the layers is considered. In the Boussinesq approximation, the equations of motion are reduced to a homogeneous quasilinear system of partial differential equations of mixed type. The flow parameters in the intermediate mixed layer are determined from the equilibrium conditions in a more general model of three-layer flow of a miscible fluid. In particular, the equilibrium conditions imply the constancy of the interlayer Richardson number in velocity-shift flows. A self-similar solution to the problem of breakdown of an arbitrary discontinuity (the lock-exchange problem) in the domain of hyperbolicity of the system under consideration is constructed. The transcritical flow regimes over a local obstacle are studied and the conditions under which the obstacle determines the upstream flow are determined. A comparison of steady-state and time-dependent solutions with the solutions obtained for the original three-layer models of miscible fluid flow is carried out.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.